Context-Based Reasoning - A Modeling Paradigm for Representing Tactical Human Performance

We formally introduce here the technique of Context-based Reasoning (CxBR).  CxBR is a human performance modeling paradigm developed at the Intelligent Systems Laboratory at the University of Central Florida.  See Gonzalez [1993, 1994, 1998, 2000], Gumus [2000], Norlander [1999], Proenza [1997] as well as several other publications on the subject found in http://www.isl.ucf.edu. 

CxBR models intelligent agents for use in a variety of environments where tactical behavior is required.  After a brief section outlining the motivation for this paradigm, each component of CxBR will be introduced and defined in detail.  A brief example of a CxBR model will then be described that will tie together each component mentioned.

3.1 Motivation for CxBR

The motivation for Context-Based Reasoning is the idea that people tend to use only a fraction of their knowledge at any one given time.  For instance, let us consider an airline pilot driving his automobile on his way to the airport.  While he needs to keep in mind the rules of the road, the knowledge of how to fly an airplane is irrelevant to his current task.  In creating a model for this pilot, it would be useless to have that knowledge accessible during the task of driving to work.  Therefore, CxBR is based on the idea that:

1) A situation calls for a set of actions and procedures that properly address the current situation.  

2) As a mission evolves, a transition to another set of actions and procedures may be required to address a new situation.

3) What is likely to happen under the current situation is limited by the current situation itself.  

The concept of dividing one’s tactical knowledge into contexts is based on these ideas.  Given any behavior to model, contexts represent exclusive classes relevant to that behavior.  From that, the knowledge required to execute a specific behavior is confined to its representative context.

While this paradigm benefits from its apparent intuitiveness, other advantages make CxBR a viable solution within the realm of tactical behavior.  The first is efficiency.  The decomposition of behaviors into modules tends to make the model computationally tractable.  Secondly, decomposing a model’s behavior space – or behavioral capabilities – into contexts enables the model to carry a very broad understanding of its overall task.  A context space representative of the entire domain in which the model is to operate, all but guarantees that it will operate at a predetermined level of intelligence at any point during its mission.

Furthermore, there are many times when a certain skill may be helpful in more than one situation.  Additionally, a certain behavior might be needed to perform a variety of tactical tasks.  CxBR models, in this sense, are highly modular.  Contexts, which may have been constructed for one specific task, can be extracted from its model and inserted into a model for perhaps a different, yet similar task that requires that context.  Because of this feature, CxBR models lend themselves well to an object-oriented software engineering approach.

Lastly, contexts that possibly include functions, rules, neural networks and case-based reasoners, are of a level considerably higher than stand-alone rules and frames as in other architectures.  When used as the basic element for representing a behavior, contexts provide an excellent standard of reference for comparisons.  This can be quite useful as elements of comparison in the performance of agents and humans in validation, collaborative behaviors, AAR and intent recognition.  More on this later. 

3.2 Definition of CxBR and its Components: 

Agents in CxBR are assigned a mission to perform.  We assert that the mission assigned, denoted as M, can be represented and executed by the agent under the control of a set of contexts C.  The contexts in C provide the agent with knowledge applicable to any foreseeable situation within the defined breadth of M.   One or more Contexts in C may be applicable to address the current situation experienced by the agent.  However, only one Context can be in control of the agent at any one point in time.  This model now holds a definition of its mission and a set of contexts that define its behavior in all situations constrained by the mission definition.  The following subsections define each component of a CxBR model, its function, and its relevance within the paradigm.  Section 4 will conclude with an example of a generic CxBR model, which will identify each component and its orientation within a model.

3.2.1 Missions: A Mission, or Mission Context, is an abstraction defined within the model and assigned to its target agent (or just agent) prior to run-time.  The target agent is the platform of organization whose actions are to be controlled through CxBR in lieu of human control.  It can be either a simulated agent or a robotic agent.  Included within the Mission description is the goal(s), any imposed constraints, and the context topology that will dictate the high-level behavior of the agent.

The goals provide the agent with an indication of its own success or failure, or in some cases, with the end-game criteria.  For example, if we were to provide an agent with a driveVehicleToWork mission, the goal would likely be for the agent to reach a specific destination.  That goal slot in the Mission would then be represented by a Boolean variable indicating whether or not the agent has reached the assigned destination.  We can formally define the Mission goal as a Boolean function g of a set of environmental and physical conditions E and P that exist at the time of query.

Goal = g(E(t0), P(t0))


In tactical missions, often a ‘goal’ cannot be defined or is not applicable.  More specifically, it is not uncommon to assign an agent with the mission of performing a certain task or behavior for an indefinite amount of time.  In this case, the goal can be construed as an end-game condition for the simulation or scenario.  If, for example, an agent representing a scout plane is assigned the mission of performing reconnaissance in an area, the end criteria (goal) might be defined as the point where the agent runs out of fuel or is ordered to discontinue the mission and return to base. 

The constraints on the mission provide the agent with a set of guidelines for operation.  These constraints can be in the form of physical limitations placed on the sensing faculties of the agent’s platform, maximum and minimum counts for scenario-specific entities (such as obstacles or enemies), or even map boundaries within which the agent is required to operate.  We can consider the constraints on the mission M to be the union of the set of physical, environmental, and scenario-specific constraints (denoted cop, coe, and cos) placed on the agent as required by its Mission.  In this definition, a constraint c provides the agent with either a constant value or a range of valid values for a certain variable within the simulation.

Constraints = {cop, coe, cos}
(

The notion of the control context will be formally introduced in the following section.  Nevertheless, it is important to mention it here as it is an essential portion of the mission.  It was mentioned earlier that to model a mission with CxBR, that mission must be cleanly partitioned into components, so that their union represents all the possible situations.  These components in combination represent completely the universe of behaviors required to carry out the assigned mission.  The reason for this requirement is that the behavior or task, as represented by any CxBR model, must currently be defined completely by the contexts that constitute it.  (Note: Eliminating this requirement is one of the objectives of the research being proposed here).

The Mission, therefore, defines the high-level behavior of the AIP by assigning it both a set of contexts C and context-transition pairs, which indicate the specific context switches that will be allowed during the scenario.  For example, consider the context set:

C = {C1, C2, C3, C4, C5, C6, C7}

If the context-transition pair <C1, C4> is introduced within the Mission M assigned to agent A, context C1 can transition to context C4.  In other words, if the agent A is currently operating in context C1, it is possible to switch to context C4 at a given time-step tk, if certain conditions in the environment exist at tk.  Sentinel rules check for these conditions on a continuous basis and, when found, execute a context transition.  Sentinel rules will be introduced as part of the discussion on contexts.

The Mission is also responsible for indicating the default major context that the agent will use during its mission.  This context serves as the initial context for the agent when it begins a scenario.  The set of contexts C, along with the set of context-transition pairs T, the Default Major Context (DMC), and the scenario’s Universal Sentinel Rules, make up the context topology of mission M.  

Context-Topology = <C, T, DMC, Universal-sentinel-rules>

After combining this with the mission constraints and goal, the definition of mission M can now be:

M = <GoalM, ConstraintsM, Context-TopologyM>
(

3.2.2 Universal Sentinel Rules: In many tactical scenarios, there exist conditions that require the agent to perform a certain task or behavior irrespective of its current context.  To account for such conditions, universal sentinel rules are encoded within the Mission.  These rules dictate whether the agent should immediately change its context, and hold precedence over the Transition Sentinel rules, which will be defined in the following section.  One example is that when flying an airplane, a serious malfunction can occur at any time and should be given immediate attention, regardless of what else is happening at the time. Universal sentinel rules are important because they represent instinctive behavior on the part of humans, which must be represented in the model.

3.2.3 Contexts: A Context, or Major Context, is a set of specific behaviors called for by a particular situation defined by environmental and physical conditions. [Gonzalez and Ahlers, 1998]  The knowledge required to carry out this behavior is encapsulated within the Context.  It represents the agent’s functional intelligence within its given environment for a specific situation.  One and only one Major Context is always active and in control of the agent.  All other Major Contexts defined in the Mission M are inactive.  The rules that map these conditions to their target context are called sentinel rules.   When a certain Major Context is active, the sentinel rules are responsible for monitoring the environment and causing the agent to activate another Major Context when changes in the situation make this transaction necessary.  A Major Context within the Mission is ‘active’ if the situation requiring its “abilities” is present.

The model engineer responsible for creating the model is in charge of defining and creating each Major Context.  Because of this, Major Contexts themselves are often intuitive subsets of the behavior to be modeled.  When encoding the knowledge for these contexts, the idea is to achieve a model that can take the same actions that an expert might take when in the same situation.  Consider again the Mission drive-Vehicle-To-Work, and assume that the Major Contexts include neighborhoodDriving, cityDriving, and interstateDriving.  The cityDriving Context will contain all the necessary functions and knowledge for an agent to successfully drive on city roads – speed limits, pedestrian avoidance, stop-lights, etc.  This high-level knowledge represents completely the intended behavior of ‘city driving,’ and because no other context requires knowledge of how to execute this behavior, it is exclusive to the cityDriving Major Context.

[image: image1.wmf]U

M

j

i

j

ij

>Î

<

,

:

S





Figure 1.  A block diagram of a context.

3.2.4 Knowledge Representation within Major Contexts: The knowledge contained within each Major Context of a CxBR model is represented by several components.  Each Major Context has a local memory the form of a local fact base, or FB, whose contents are written directly from the agent’s inputs.  An inference engine, accessible to each context, can use action rules to draw conclusions from these facts using traditional forward chaining inferencing, adding new assertions to the fact base in the process.  Thus, the context logic for a Major Context is composed of the control functions (cf’s), knowledge, and action rules that constitute the agent’s expected ‘behavior’ within that Context.  Formally, we define CFMC as the set of functions that control the agent under a specific Context as:

CFMC = {cf1, cf2, cf3, …, cfn}

Furthermore, we define the set of action rules (ar’s) for a specific Major Context as ARMC.  Action rules are general purpose productions used for among other things, Sub-Context activation.  They can use facts located on the local fact base, or local variables in the functions that form part of CFMC.  Some implementations of CxBR may additionally contain a global fact base upon which facts accessible to all models may reside.  Action rules may also use facts on the global fact base as antecedents.  Thus, we can formally define ARMC as:

ARMC = {ar1, ar2, ar3, ar4, …, ark}

Note here that, as mentioned previously, the CFMC and ARMC can be replaced by a neural network or a case-based reasoner, among many other techniques.  This abstract representation does not change, as these are also considered to be functions, per se.

Lastly, we define the knowledge contained by the Major Context as a set of frames or classes whose attributes and methods/daemons are essential elements of the tactical knowledge required to successfully navigate the current situation.  We refer to this knowledge, for lack of a better name, as Knowledge Frames or KFMC.

Therefore, the Context-logic which controls the actions of the agent while under the control of a Major Context is formally defined as:

Context-logic = < CFMC, ARMC, KFMC>
3.2.5 Sub-Contexts: CxBR supports the use of context-like structures, known as Sub-Contexts, which encompass a small functional section of a Major Context not directly critical to the mission objectives.  These structures share logical similarities to Major Contexts, but lack many of their attributes.  A Sub-Context is called upon, like a function, to perform a subtask deemed necessary in the logic by a Major Context.  Unlike Major Contexts, however, one Sub-Context does not need to be active at any given moment.  Furthermore, when a Sub-Context has finished executing, it is immediately deactivated and control shifts back to the Major Context that called it.  In terms of its role, it is more convenient to think of Sub-Contexts as user-defined functions that are slightly more complex and specific to the model’s mission.  However, unlike user-defined functions - whose scope is typically the Major Context that uses it – Sub-Contexts can be used by any Major Context present within the model.  This enhances re-usability of components in the model.  Nevertheless, we can represent the Sub-Context by a vector function - whose input is an action rule of the calling Major Context. 

TheSubContext0 = f0 (ARMCi)


3.2.6 Transition Sentinel Rules: The rules embodying the conditions under which a Major Context transition is required are called Transition Sentinel Rules, and are as important in representing the agent’s behavior as the context logic itself.  Transition Sentinel Rules indicate when the appropriate conditions for each applicable transition (each context-transition pair provided by the Mission) hold true.  If, for instance, the mission provides a context-transition pair for Major Context C1 to C3, a sentinel rule will be present within C1 that monitors for the conditions warranting a transition to C3.  If that (those) condition(s) arise(s), the transition sentinel rule(s) corresponding to that pair will fire, and a transition will be instantiated.  

Transition sentinel rule antecedents are the transition criteria mentioned earlier.  These may relate to facts in the local fact base of the Context, the global fact base of the system, if one exists, and/or the current state of the agent (e.g. inputs, physical state and location).  While there are often fixed conditions for transitioning to a given context, sentinel rules are unique to the context to which they belong.  This feature allows the agent to function in more complex tactical domains where transitions to a Context might be under two entirely different motivations.

Each context Ci includes a set S of transition criteria that represent the conditions for which a transition is effected.  There can exist multiple rules for transitions involving the same context pair, and so we define the set Sij to represent the set of sentinel rules involving the transition from Major Context i to Major Context j.  Therefore, we can define the set of sentinel rules of Context Ci as Si - the combination of all Sij where <i, j> exists as a valid transition within mission M.

Si = 
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(

Therefore, a Major Context Ci, when implemented within a Mission M for an agent, includes a set of sentinel rules Si, a local fact base FBi, and context-logic CLi  that determines the action of the agent when operating in Ci.  

Ci = < Si, FBi, Context-logici >
(

3.3 A Generic CxBR Model and Algorithm

Figure 2 is a block diagram of a generic CxBR model.  As illustrated, mission M defines a context topology for the model as well as valid context-transition pairs (illustrated by the dashed lines), agent constraints, universal sentinel rules, and mission objectives (goals).  M is also responsible for identifying the Default Major Context, which is the Context in which the agent will operate at the start of the mission.  Furthermore, if during the execution of the mission no sentinel rules fire within the current Major Context and it is found that the current context is not valid, the model will revert to this default context.  

CxBR models also include an interface through which commands can be sent and scenario-data received.  This interface module stores any sensor data read by the agent, and includes any necessary code needed to implement the actions indicated by a context.  When a model is executed, this module is instantiated and assigned a mission.  At that point, it is considered by the model as the agent for the scenario, as it serves as the most direct link from the model to the physical agent.  A full description of CxBR can be found in Gonzalez and Ahlers [1998].

In summary, CxBR requires a modeler to represent two things about a context: 

1) The functionality within the Major- or Sub-Context that permits to successfully navigate the current situation.  This includes the CF, AR, KF concepts. 

2) The situational awareness knowledge required for it to know when a Major or Sub-Context is no longer relevant and must be de-activated and which other Major Context to activate in its place.  This includes the Transition Sentinel Rules.

The basic CxBR algorithm is as follows:

Step a) Initialize the simulation by instantiating the objects involved in the mission exercise.  This includes all aspects of the simulation environment in where the exercise will take place.

Step b) Initialize the entity of be controlled in the simulation environment of Step a above.  Activate the initial Major Context and, if applicable, sub-context, and begin the simulation or the live excercise.

Step c) At each time in the simulation or actual exercise, first determine whether the conditions for mission termination have been achieved.  If so, terminate execution and stop.  Else:

1) Execute the functions and methods composing the active Major and Sub-contexts, and calculate the position and status of the controlled entity in the next time step.

2) Monitor the environment with the applicable Sentinel rules to detect the conditions that will trigger a transition in Major Contexts.

3) If a transition is mandated, de-activate the currently active Major Context or Sub-context, select the next Major Context and activate it for the next time step.

4) Update the time step.
3.4 Background of CxBR and some applications

Several prototype applications have been developed using CxBR, mostly in automobile driving models, but also some in surface ship applications for the Navy.  See Gonzalez [2000], Brown [1994], Grejs [1997], Gumus [1999], and Proenza [1997].  The early implementations were done in the CLIPS tool.  However, while CLIPS served as an adequate vehicle for implementing CxBR in its early forms, it was not an ideal one, and several difficulties with it became apparent. 








Figure 2.  Block diagram of a CxBR model.  Dashed lines represent valid context-transition pairs. Solid lines indicate either inputs or commands.  C2 is designated as the active Major Context. 

In 1998, Norlander [1998] developed a CxBR Framework that provided an infrastructure optimized for representing human behavior in CxBR.  This replaced the use of CLIPS as the implementation tool.  Subsequently, Devero [Devero and Gonzalez, 1999] proceeded to add the capability to incorporate rudimentary collaborative behavior between members of a team with a common goal into Norlander’s CxBR framework.  Furthermore, it was used as the modeling paradigm to represent the behavior of entities that have been degraded through either enemy fire or equipment malfunction [Gallagher and Gonzalez, 2000].

Saeki [2000] has investigated the competing context concept.  This represents a potential powerful extension of CxBR to significantly enhance its effectiveness and efficiently.  It forms the basis for one of the tasks proposed here.  Other studies with important implications have also been conducted with regards to CxBR.  For example, Grama [Grama et al, 1998] used the concept of CxBR to do tactical planning for mid-echelon Army applications (battalion, company, etc)

This concept has received significant interest from other researchers in the technical literature.  Turner [1993, 1999], Brezillion [1998] and Bass [1996] have all independently developed context-based approaches to modeling human behavior.

3.5 Brief Example of Context-based Model of Automobile Driver

Driving an automobile has all the elements of a tactical task.  One must have an objective and a plan for accomplishing the objective.  There must be an environment in which the objective is to be sought.  One must interact with other objects – cars, pedestrians, stationary objects.  Lastly, there are traffic laws by which to abide.  
A model of a driver can be built and executed in CxBR. We can define our sample mission as driving from one’s office to one’s home.  This can be composed of driving through the building parking lot to the streets in the city center.  One then enters the freeway and heads north to the suburbs.  Upon reaching exit 26, one gets off the freeway and after a right turn on a traffic light, the driver enters a suburban four-lane highway.  This highway leads to a small suburban street on which the driver’s home is located.  Each of those driving environments (parking lot, city streets, freeway, suburban highway and residential street) represent different driving situations.  One such situation (the freeway) requires high speeds but presents no cross traffic.  Conversely, another (the parking lot) limits the speed but includes the presence of multiple pedestrians and stationary objects as well as the potential for cross traffic.  Each of these requires different skills and knowledge to navigate successfully.  

The entire mission is described by the Mission Context (item 1 in the previous section). Each of the above situations represent Major Contexts (item 2), each with the functions (items 3 and 6) and sub-contexts (item 2) that permit them to manage the agent driver successfully when in their specific situation.  They also contain the Sentinel rules (item 4) that monitor the environment for signs that this Major Context is no longer applicable to the changing situation.  For example, a Sentinel Rule would state that “when exit 26 reached, transition to the Exit Ramp Major Context.  Lastly, the objects necessary to simulate the mission are defined (item 5).  Refer to Gonzalez and Ahlers [1998] for details on CxBR.
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