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ABSTRACT:.   A recent report by the National Research Council (NRC) declares neural networks “hold the
most promise for providing powerful learning models”. While some researchers have experimented with using
neural networks to model battlefield behavior for Computer Generated Forces (CGF) systems used in distributed
simulations, the NRC report indicates that further research is needed to develop a hybrid system that will
integrate the newer neural network technology into the current rule-based paradigms.  This paper supports this
solicitation by examining the use of a context structure to modularly organize the application of neural networks
to a low-level Semi-Automated Forces (SAF) reactive task.  Specifically, it reports on the development of a neural
network movement model and illustrates how its performance is improved through the use of the modular context
paradigm.  Further, this paper introduces the theory behind the neural networks’ architecture and training
algorithms as well as the specifics of how the networks were developed for this investigation.  Lastly, it illustrates
how the networks were integrated with SAF software, defines the networks’ performance measures, presents the
results of the scenarios considered in this investigation, and offers directions for future work.

1. Introduction

The combination of computer simulation and networking
technologies has provided military forces with an
effective means of training through the use of Distributed
Interactive Simulation (DIS).  DIS is an architecture for
building large-scale simulation models from a set of
independent simulator nodes that represent entities in the
simulation [1].  These simulator nodes individually
simulate the activities of one or more entities in the
simulation and report their attributes and actions of
interest to other simulator nodes via the network.  DIS
nodes simulating combat vehicles, such as M1 Abrams
tanks, are crewed by soldiers being trained. The trainees
operate the controls of the simulators as they would in the
actual vehicles, and the simulators implement actions in
the simulated battlefield.  Since, in a synthetic battlefield,
the trainees need opposing forces against which to train, a
type of DIS node known as a Computer Generated Force
(CGF) system was developed.

CGFs are computer-controlled behavioral models of
combatants used to serve as opponents against whom

trainees can fight or as friendly forces with which the
trainees can fight.  At a minimum, the behavior generated
should be feasible and doctrinally correct.    For example,
behaviors should be able to emulate the use of formations
in orders, identify and occupy a variety of tactical
positions (e.g., fighting positions, hull down positions,
turret down positions, etc), and plan reasonable routes.

Researchers in [2], [3], and [4] have experimented with
using neural networks to model battlefield behavior for
CGF systems used in military simulations.  This
technology has been identified as one that “holds the most
promise for providing powerful learning models” in a
recent National Research Council Report [5].  Also
asserted in this report, however, is the need for further
research to develop hybrid systems that will integrate the
newer neural network technology into the current rule-
based paradigms.  This investigation considers one such
approach by using a framework based on modular
decomposition to develop and apply the neural networks
generating SAF behavior.  Specifically, this research
examines the performance improvements made to a
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neural network based near-term movement model by
adopting a modular approach.

2. Modular Decomposition

The use of a modular approach to a modeling task can be
beneficial in a variety of ways.  For example, it can be
used for the purposes of improving performance.  In other
words, although the task could be solved with a
monolithic set, better performance is achieved when it is
broken down into a number of expert modules.  Once the
task is decomposed it is possible to switch to the most
appropriate module, depending on the current
circumstances or context.  Switching has been discussed
in the control literature [6][7], as well as the literature on
behavior-based robotics [8].

In addition to performance improvement, other
motivations for adopting a modular approach to a problem
include a reduction in model complexity and construction
of the overall system such that it is easier to understand,
modify, and extend.  Thus the “divide and conquer”
principle is used to reduce the complexity of a single net
system.  This enables the use of different neural net
architectures or algorithms to be applied to individual
sub-problems, making it possible to exploit specialist
capabilities.  Moreover, where appropriate, some of these
components could make use of non-neural computing
techniques.  This justification has been noted [9][10] and
is common to engineering design in general.  Another
motivation for adopting a modular approach is the
reduction of network training times [11].  Finally, in well-
defined domains, the use of a priori knowledge can be
used to suggest an appropriate decomposition of a task.
This approach complements the knowledge acquisition
efforts and knowledge representation paradigms used in
current SAF systems [12] and can be easily extended to
the acquisition of knowledge and tactics for SAF systems
[13].

The decomposition of a problem into modular
components may be accomplished automatically or
explicitly.  When the decomposition of the task into
modules is determined explicitly, this usually relies on a
strong understanding of the problem.  The division into
sub-tasks is known prior to training [14], and improved
learning and performance can result.  An alternative
approach is one in which the task is automatically
decomposed according to the blind application of a data
partitioning technique.  Automatic decomposition is
typically applied with the intent of performance
improvement, whereas explicit decomposition could have
the aim of either improving performance or
accomplishing tasks that might not be accomplished as
easily or as naturally with a monolithic net.

3.  Neural Networks

A variety of researchers have worked in modeling human
driving skills such as acceleration, steering, and vehicle
following with neural networks [15], [16], [17], and [18].
A neural network is a collection of simple processors or
nodes interconnected with each other that learn from
examples and store the acquired knowledge in their
interconnections, referred to as weights.  Neural networks
can solve a variety of problems related to non-linear
regression and discriminant analysis, data reduction, and
non-linear dynamic systems. One of the practical
characteristics of neural networks is that they lend
themselves to parallel-distributed processing using simple
processing units rather than a complex CPU.   This makes
their execution very fast.

The multi-layer feed-forward network is one of the more
typical network designs used in neural network
applications.  The example in Figure 1 is a 3-layer feed-
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Where
• x1, x2, x3 and x4 are inputs (k = 1 to 4)
• y1 and y2 are outputs (i = 1 to 2)
• there are three hidden nodes (j = 1 to 3)
• there are three layers (L = 0,1,2)
• node “12” is node 2 in layer 1
• weight “12” connects node 1 from layer L+1 to

node 2 of layer L

Figure 1.  4-3-2 Feed-Forward Architecture

forward network with four nodes in the first layer
representing each dimension of the input vector, two
nodes in the last layer representing each dimension of the
output vector, and a hidden layer consisting of three
nodes.  This network attempts to develop a matching
function between the input and output vectors by using
some training algorithm.  One of the more popular
training algorithms is a method known as back-
propagation.  This method is based on finding the outputs
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at the last layer of the network, calculating the errors
between the actual and the predicted outputs, and then
adjusting the network weights to minimize the error.
Weight changes are implemented in a backward fashion
starting from the weights converging to the output layer
and proceeding backwards to the weights that converge to
the hidden layer closest to the output layer. These
computations are repeated such that the error is
propagated back until the weights converging to the
hidden layer closest to the input layer are reached.

In short, back-propagation involves a two step process.
The first step, the forward pass, propagates the effects of
the inputs forward through the network to reach the
output layer.  This step is governed by three forms of
equations.  First, in equation 1.1, the total weighted input
to the jth node for pattern p is given by:
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where )(g is the frequently used sigmoid function.
The net input to the ith node for pattern p is similar to
equation (1.1) and is given by:
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and the output of the ith node for pattern p, yI(p), is given
by:
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where )(g is shown as the sigmoid function.
Lastly, the error function associated with the pth

input/desired output (dI(p)) pair, is given by:
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Once the error is computed, the weights are adjusted such
that Ep is minimized.  This occurs in the second pass, the
backward pass, by computing the negative gradient of the
error function and taking the partial derivatives of this
function with respect to the weights (equations 5.1 and
5.2). This allows errors at the output layer to be
propagated backward toward the input layer in proportion
to the change in activity at the previous layer.
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η  is a user defined parameter.

By applying the chain rule of derivation (see [19] for
complete derivation), equations 5.1 and 5.2 reduce to:
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For the example in Figure 2, these equations reduce to:
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Each of these weight adjustments directs the network
towards a solution to the input/output mapping.  That is,
these weights are training the network to produce a
certain output given a set of inputs.  This is one of the
fundamental benefits of the neural network approach.
With the proper training and representation, the network
will self-organize to arrive at a mapping of how the
responses are formed and there is no need to acquire and
represent an expert’s knowledge in terms of rule sets.

4.  Methodology

This study used ModSAF, a CGF system for training and
research, to focus on the near-term movement behavior of
a SAF.  The near-term movement behavior was selected
because it is computationally challenging and highly
observable [20], [21], [5].   It also provides a direct
correspondence to ESPDUs resulting from errors in entity
position.  This proves useful in finding a way to measure
the performance of this study as explained in the next
section (section 5).  However, since moving in the
battlefield is a highly complex behavior depending on
many factors, the problem was scoped to specifically
consider how a single entity (i.e., a ModSAF M1A2)
performs a “Road March”. This is accomplished by
estimating the changes in an M1A2 entity’s speed and
orientation given its previous state and the previous state
of the simulated world

For this application, a feed-forward architecture with
back-propagation training was used in each of
experimental systems.  In the first system, Model 1, two
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networks were considered.  One of these networks
predicts the change in an entity’s speed and the second
network predicts the change in the entity’s heading.  In
the second system, Model 2, four networks were
considered.    Of these four neural networks, two predict
the change in the entity’s speed and the other two predict
the change in the entity’s orientation.  Each of these pairs
of networks can be further distinguished by whether the
M1A2 entity is traveling a straight segment of the road or
is entering a turn.  The rule used to distinguish between
these segment types was acquired from the code used to
generate the SAF’s behavior and is based on the straight-
line distance to the current waypoint.  This decomposition
category is referred to as a “context” and the change from
one context to another context is referred to as a “context
transition” [22].  In this problem, for example, there are
two contexts: straight and turning.  Also, there is a rule
defining when to shift between contexts:

 if distance to next waypoint is <= 25 m,
       context = turning
else,
      context = straight.

This rule represents an explicit decomposition of the task
and the application of this or other similar rules results in
the generation of four networks identified as straight-
speed (SS), straight-heading (SH), turn-speed (TS), and
turn-heading (TH).

Each network used a sigmoid function at the hidden nodes
and a linear transformation at the output nodes.  The
configuration of the networks in each of the models may
be seen in Table 1 and the inputs were normalized
according to equations 7.1 – 7.18 below.  Fundamentally,
the inputs for each of the networks were a function of the
M1A2 entity’s state at the last simulation clock and how
this state related to the road characteristics and March
Order parameters.
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where

     )( MDaSRa ttt += (7.3)

     )( MDbSRb ttt += (7.4)

     )( MDcSRc ttt += (7.5)

     MPSRp ttt = (7.6)

     MSRs tt /= (7.7)

     trt HxyHabHRab ×= (7.8)

     trt HxyHbcHRbc ×= (7.9)

     tatspeedentityS t = (7.10)

     waypointprevioustodistanceDat = (7.11)

     waypointcurrenttodistanceDbt = (7.12)

     waypointnexttodistanceDct = (7.13)

     speedordermarchM = (7.14)

     roadtodistancelarperpindicuPt = (7.15)

     absegmentroadofdirectionHabt = (7.16)

     bcsegmentroadofdirectionHbct = (7.17)

     norientatioentityHxy t = (7.18)

Context Architecture Predictors Response

Model 1
No context
Switching

Straight (SS)
Speed

Networks
Model 2 Turning (TS)

8-20-5-1
1111

1111

−−−−

−−−−

tttt

tttt

,Hz,HRbc,HRabRs

,,Rp,Rc,RbRa
tS∆

Model 1
No context
switching

Straight (SH)
Heading

Networks
Model 2 Turning (TH)

7-20-5-1
111

1111

−−−

−−−−

ttt

tttt

,HRbc,HRabRs

,,Rp,Rc,RbRa

tθ∆

Table 1.  Architecture by Model Type
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Data for training and validation were gathered over the
45, segment route shown in Figure 2.  This route is

Figure 2.  Route Used for Neural Network Training

approximately 7 kilometers long and took the tank
about 15 minutes of simulation time to travel at a
March Order speed of 8 m/s.  From this period, a total
of 13760 examples were generated at a rate of 15 HZ.

Of these, Model 1 used 860 examples for training the
speed network, 860 examples for training the heading
network, and 859 examples for validating the training
of both of these networks.  Alternatively, Model 2 used
568 examples for training the straight-heading (SH)
network, 292 examples for training the turn-heading
(TH) network, 100 examples for training the turn-speed
(TS) network, and 760 examples for training the
straight-speed (SS) network.  An approximately equal
number of examples were used for validating the
training results of each network.  The training rate was
selected as 0.01 and the initial momentum parameter
was .9.  The momentum parameter was periodically
adjusted to speed the rate of descent along the error
surface.  The training and validation results for each of
the four networks may be seen in Table 2.

5. Experimental Results

Essential to the task of determining whether one model
out-performed another is a metric to make such a
comparison.  Validating SAF models has typically
been performed subjectively by SMEs and the DIS
community has no known quantitative performance
measure to evaluate the performance of a SAF near-
term movement model.   However, given the level of
resolution of SAF maps, it is impractical to assume that
a SME could detect a noticeable difference in models
due to the addition of a context shift.  In other words,
even if a human observer could visibly discriminate
between two different types of movement models, it is
unlikely that he could visibly detect the difference in
the same movement model represented by a monolithic
neural network versus represented by a module of
networks.  Because the SME validation and
comparison of the models used in this research was
susceptible to error, the investigators made use of the
DIS entity state synchronization concept to evaluate
model performance.  This was accomplished by
implementing each of the models as dead-reckoning
models (as opposed to SAF behavioral models) and
then comparing the numbers of PDUs generated by
each of models 1 and 2.  Implicit in this measure of
performance is the assumption that the model with the
lower PDU count is the model that best fits the source
data used to develop the model and from which the
PDU count is derived.

The comparison of the entity’s true position and the
position according to the dead-reckoning model occurs
in the ModSAF libentity library.  As such, the neural
network models used in this investigation replaced the
dead-reckoning code in the libentity library.  The
implementation of this functionality in ModSAF is
illustrated in Figure 3.

Delta Speed
S∆

Error(m/s)

Delta Heading
θ∆

Error(rads)
Context Model Type

Training 0.259977±2.045589 0.004578±0.007818

Validation 0.206374±0.825324 0.014221±0.067663 N/A
No Context

Shifting
Model (1)

Training 0.179351±1.672473 0.000150±0.0022

Validation 0.083991±0.299115 0.000153±0.0024 straight

Training 0.097374±0.268849 0.002010±0.0174

Validation 1.417666±0.748291 0.002704±0.0175 turning

Context
Model (2)

Table 2.  Training and Validation Mean Square Error and Standard Deviation for Models 1 and 2
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Figure 3.  Functional Relationship of Neural Networks to
ModSAF Dead-Reckoning Code

The PDUs, evidenced as errors in location or orientation
generated by the monolithic neural network, Model 1, was
compared with the number of PDUs generated by the
context-based neural network, Model 2.  As evidenced in
Figure 4, there was an 11% reduction in Model 2’s total
PDU count over Model 1’s PDU count.  This suggests
that the performance of neural networks applied to a low-
level SAF reactive-task can be improved by the use of the
context-based task decomposition scheme.
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Figure 4:  PDU Results from Model 1 and Model 2

6. Future work

The use of the context-based decomposition scheme
(Model 2) resulted in a PDU reduction of 11% over the
monolithic neural network model (Model 1). This

suggests that the performance of neural networks applied
to a low-level SAF reactive-task is improved by the use of
the context-based task decomposition scheme.  Future
work in this aspect of the study includes investigating
methods of automating the learning of the task
decomposition and hence, the context-shifting rules.
Also, the improvement of the neural networks’
performance continues to be explored.  This includes
considering alternative types of architectures, inputs,
normalization schemes, and sampling strategies.  Since
the ModSAF infrastructure to collect data and evaluate
models is now in place, more work can be done to
improve these preliminary results.
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