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Abstract

The aim of many research projects in the field of
artificial intelligence entail the incorporation of human-
like intelligent behavior in the computer.  The
represented level of intelligence is highly dependent
upon the amount of knowledge possessed by experts in
the field and the efficiency and effectiveness of
transferring this expertise from man to machine. This
knowledge acquisition process is difficult and time
consuming.  Furthermore, most of the current
knowledge acquisition techniques focus on gathering
information about a domain which is static in nature.
They capture explicit static information which does not
vary over time and is easy to mold into a symbolic
representation.  Most real-life situations, however,
involve dynamically changing information and require a
non-symbolic form of representation.  Current
knowledge acquisition techniques are not well suited for
the extraction of implicit expert knowledge while
handling a situation in a dynamic environment.

This research describes a general methodology for
learning implicit situational knowledge by observing the
expert while reacting to a real-time simulation.  The
paper outlines the IASKNOT system  methodology
which gathers, represents, and learns expert knowledge
by examining the expert's simulated surroundings while
simultaneously monitoring the expert's actions for a
given situation.  It utilizes recent advances in the areas
of neural networks and artificial intelligence. The
method demonstrates the ability to train on basic skills
and to generalize learned actions to handle more
complex situations not previously encountered.  It was
implemented and tested for handling specific situations
in the driving domain.

1  INTRODUCTION

Knowledge about a domain is typically predetermined
and acquired through one of two methodologies: use of

a knowledge engineer, or use of automated knowledge
acquisition techniques.  The primary objective of the
two methodologies is to capture the expertise (expert

knowledge) and efficiently represent it in the computer
for later use.

The most commonly used knowledge acquisition
approach is to employ a competent knowledge
engineer as an intermediate between the expert and the
system (Boose and Gaines, 1989).  The knowledge
engineer facilitates the transfer of human expertise to
the computer.  This involves interviewing the expert and
preprocessing the information before deciding on the
best representation scheme to use to represent this
expertise.  It is a time consuming process.  The query
process is repeated until the amount and the form of
the knowledge is satisfactory for the current domain.
However, there are major drawbacks with this
methodology that limits its effective representation.
They include non-articulate experts, limited domain
knowledge possessed by the knowledge engineer, and
bias (Gonzalez and Dankel 1993; McGraw 1989).

Automated knowledge acquisition, on the other hand,
improves the knowledge acquisition process.  It
attempts to automate the knowledge engineering
(query) process by allowing the expert to interact
directly with the computer.  It provides the expert with
the needed tools and environment for entering
information into the system.  It allows for a direct link
between the expert and the system and attempts to
query the expert on various concepts related to the
overall domain.  The elicited expert knowledge is
mapped into an internal representation that the
computer can comprehend.  The automated methods
provides an enhancement to the knowledge engineering
techniques, yet most still acquire knowledge by asking
the expert for information on how to handle different
situations.  Relying on querying the expert for
knowledge limits the represented information to that
which is "explicit”.

2  EXPLICIT VERSUS IMPLICIT KNOWLEDGE

Experts utilize different types of knowledge for handling
each    situation.    Slatter   (1990)   emphasize      the

importance of differentiating between the types of
expertise, explicit and implicit , which is applied by
experts while dealing with real-life situations (Slatter,
1990).  Explicit knowledge can be described as
knowledge that can be verbalized and thus represented
symbolically.



as the rules of thumb, theories, and facts.  It is easy for
the expert to articulate this type of knowledge which
makes it relatively easy to elicit and model.  Implicit
knowledge involves tacit knowledge that is intuitive and
judgmental in nature.  It is considered non-articulated
experience-based knowledge used by experts to
perform a task or solve a problem in an intuitive
manner.  The actual representations used by experts to
model this knowledge are complex and poorly
understood; consequently, it is very difficult to define,
acquire and represent.  Experts build an internal feeling
about the criticality of a situation and learn to apply
proper actions without conscious effort.  For instance,
turning onto  a two way street or passing another
vehicle represent common every day situations which
necessitate the use of implicit expertise, see figure # 1
below.

Figure # 1: Examples of the use of implicit expertise

When asked to turn left on a two way street the driver
uses his/her own judgment to decide when it is safe to
cross.  The driver assesses the situation and evaluates
the threats imposed by the other vehicles.  The
presence and absence of vehicles on the two lane road
is taken into consideration.  More importantly, the
driver does not calculate the speed of the oncoming
vehicles but rather, he/she relies on their intuitive
judgment about the dynamics of the vehicles involved
as well as their own capabilities.  Using previous
experiences, the expert driver learns to map situations
to actions.  If asked to describe the decision process
that was used to handle the situation, most experts
would not be able to properly articulate their reasoning
process.  A common reply would be: “it felt like the right
thing to do at the time.”

Experts possess a sense of awareness to their
environment and base their actions on implicit feelings
about the current situation.  Relying on the experience
gained by encountering a vast number of previous
problem situation, an expert typically deals with new
situations intuitively by matching the new situation with
prototype situations stored in memory rather than
applying rules that deal with the situation (Dreyfus and
Dreyfus, 1992).  In many instances, it would be much
easier for experts to demonstrate their actions rather
than attempt to verbalize them.  The traditional
knowledge engineering approaches totally avoid
representing the expert's implicit knowledge.  Some
techniques have been applied toward skill acquisition
(Lee and Shimoji, 1991).  Most, however, are too

restricted and are unsuitable for the formulation of
domain knowledge.

3  SITUATIONAL AWARENESS

Humans rely greatly on learning by watching others
handle new or difficult situations.  It is common
practice to observe others in action and “implicitly”
learn from them strictly through observation.
Mimicking this learning process in the computer
requires the use of simulation to model real-life
situations.  A computer that learns by observing the
expert must have a sense of awareness about the
current situation.  It must be capable of sensing the
presence and absence of dynamic objects in the
simulation, defining and hypothesizing about the
current situation, predicting future situations, and
monitoring and learning how the expert would remedy
that situation.

The field of psychology and military research in
Command and Control (C2)  have provided much
needed insight in explaining the human aspect of
situational awareness and the implementation of
situation and threat  assessment on a computer,
respectively.  The psychological research in SA views it
as a cognitive process that involves the integration,
extraction and comprehension of environmental stimuli
and the projection of future events (Garland et al.,
1991).  Although the military research in C2 does not
utilize the same terminology for SA, their research in
multi-sensor data fusion clarifies some of the elements
needed to implement machine SA (Andriole, 1991).
Walts and Llinas (1990) break down SA to three levels.
Level one involves data processing activities which
include the detection, data association, state
estimation, and attribute classification.  Level two and
three, known as Situation Assessment and Threat
Assessment (STA) respectively, represent a
comprehensive analysis of the findings in level one.
They emphasize information processing activities
rather than data processing.  Common functions
include Alignment, Association, and Correlation (Waltz
and Llinas 1990).

While research has been conducted on components of
Situational Awareness (SA) like knowledge acquisition,
representation and memory, representing SA in a
computer is a difficult task that has not yet been
entirely accomplished.  SA involves acquiring implicit
expert knowledge that cannot easily be represented
using explicit rules.  The variations in the environmental
stimuli that distinguish various situations cannot
efficiently be used to represent situational knowledge
without having to generate an enormous number of
explicit rules. The study of Artificial Intelligence (AI) and
Artificial Neural Networks (ANN) provide researchers
with the tools to learn, represent and reason about
knowledge.  Ideally, a learning paradigm should exist
which allows implicit situational knowledge to be



acquired by "observing" the expert carry out a task in a
simulation-based environment.

4  GENERAL SYSTEM DESCRIPTION

A framework was developed to capture the expert
implicit situational knowledge via observation.
IASKNOT, Implicit Acquisition of Situational Knowledge
fOr Training, is a system which applies current
research in AI, ANN and simulation to enable the
acquisition of implicit knowledge.  It gathers,
represents, and learns expert knowledge by examining
the expert's simulated surroundings while
simultaneously monitoring the expert's actions for a
given situation, see figure # 2 below.

Figure # 2:  IASKNOT information processing
It formulates a knowledge base which incorporates a
model of the expert’s intuitive, judgmental responses to
various situations.  The approach uses a simulated
environment to generate various situations (scenarios
generation); allows the expert to react to the current
situation (take action); observes the actions; and
reasons about the implicit knowledge in the situation
that caused the action.  This requires the following
functions:

1) sensing the presence and absence of
dynamic objects in the simulation.

2) defining and hypothesizing about the
current situation,

3) predicting future situations, and
4) monitoring and learning how the expert

remedies the situation.

A static and dynamic object databases are used to
generate a realistic dynamic situation that requires an
expert to apply his/her implicit expertise.  Each
scenario identifies an underlying goal (i.e., drive to the
next intersection) that must be met by the expert.  A
Situational Awareness Module (SAM) monitors the
expert actions as well as the changes in the
environment.   It handles all of the complex reasoning
required to associate the expert actions to the current
state of the environment.  The main purpose of this
module is two-fold: clarifying the current state, and
learning the implicit expert actions and skills necessary
to remedy the situation.  Its knowledge base is
augmented with easily accessible explicit knowledge
provided by a knowledge engineer or other sources of
inputs such as books (e.g., driver's education book).
The explicit knowledge is used to help the system
generalize learned actions to handle more complex
situations not previously encountered.

5  SYSTEM MODES OF OPERATION

The IASKNOT system is composed of three modes of
operations: Data-Collection, NN-Training, System
Testing.  Several events within the simulation are
identified as "critical training events".  These events
constitute a limited section of the overall domain
expertise.  During the Data-Collection mode, the system
presents the expert with the generated scenario.  The
expert utilizes the given controls, also known as
“control variables”, to manipulate the current state in
response to the current situation.  SAM collects the
dynamically changing information describing  the
current situation as well as data learned from
monitoring the expert behavior.  A Data Sampler
component identifies critical points in time and selects
the  appropriate sampling rates to reduce the collected
data without loosing important information about
objects and time relationships.   The pre-processed
data is used to train specific neural networks (i.e.,
recurrent networks) to learn to mimic the expert
behavior.  The customization, setup, and creation of the
applicable ANS are some of the functions that are
performed in the NN-Training mode.

A knowledge base composed of several Neural
Network Knowledge Units  (NNKU) is then compiled.
Individual NNKU are developed and trained to handle
specific events (i.e., speed signs events, traffic light
event, etc.). Furthermore, a hierarchical structure is
constructed that ties the relationships between various
objects and events.  The methodology applies Object-
Oriented techniques to model this structure.  The



System-Testing mode used by SAM relies on applying
the learned skills encapsulated in NNKU along with its
explicit knowledge to handle the situation at hand.  The
Resolver component used in testing compares the
outputs of each NNKU and checks for noticeable
inconsistencies in the suggested actions provided by
current active NNKUs.  Each active NNKU is concerned
in reacting to its own inputs.  The Resolver inspects the
overall picture and attempts to resolve the conflict by
examining the available explicit knowledge (i.e., facts
and rules) associated with the involved objects and
events.  This module is responsible for evaluating the
overall holistic picture which describes the current
situation.

6  SYSTEM IMPLEMENTATION

The defined framework follows a generic approach that
can be applied to most models of dynamic
environments.  The automobile driving domain was
selected as the application domain for testing the
effectiveness of the IASKNOT methodology.  The
primary interest in using this simulation is to provide a
realistic environment where the actions of the expert
driver can be monitored while dealing with  various
scenarios.  Several factors played a role in the
selection of this domain.  These include the following:

1) embedded richness of its implicit expertise
2) familiarity of the domain to others
3) availability of experts
4) variability of objects and situations
5) ease of interpretation of the results

The developed system was implemented on a PC
compatible machine using object-oriented techniques.
Visual C++ for windows was used to code the user
interface as well as the required neural network
algorithms.  CLIPS, an expert system shell, was used
for representing some of the expert reasoning
processes that enable the generalization of learned
knowledge.  The resulting knowledge base incorporates
both numeric and symbolic forms of knowledge.  It
forms a representation of expert knowledge modeled
via rules, facts, objects and encapsulated in separate
NNKUs.  The encapsulation of implicit knowledge
makes the resulting knowledge base better suited for
simulation-based training.

7  SYSTEM TESTING

The overall testing approach involved one expert driver
who is familiar with using the system controls.  The
expert is given ample practice time to adjust to the
perception that is provided by the simulation.  Expert
actions are assumed to be the correct actions while in
data-collection mode.  The driver was presented with
fifteen sessions of every training situation.  The lower
and upper bounds for expert actions were determined.

Additionally, the mean action was calculated and used
to train the system to handle the specific event.

Three criterias were used to evaluate the system:
learning, generalization, and coping capabilities.  The
first tests how well the system learned to mimic the
expert given the same conditions as those used for
training.  It mainly measures the accuracy of the
system actions.  The second criteria, generalization,
tests how well the system can adapt what it learned to
some variation of the training events.  The coping
capabilities test the extension of learned implicit
knowledge to new and compound situations.  A
compound situation is a complex situation comprised
of more than one training event at a time.  An example
of such an instance can be illustrated by having a
situation which is not previously seen by the system.
The scenario might involve both a traffic light training
and a pedestrian crossing event occurring at the same
time.  The test evaluates how well the system can
apply and generalize its NNKUs to handle conflicts
between events.

The data was evaluated using correlation tests, mean
absolute differences, and standard deviation of errors.
These measures examine how well the system outputs
follow the expert outputs, determine its closeness, and
determine the deviation on average from the mean.
The results of the tests showed that the correlation
were very high and the absolute differences were low
for system learning, generalization, and coping.  Table
# 1 describe an example test results for learning to
handle a red-green traffic event which changes state at
42 seconds.

Table # 1.

Test results for traffic at 42 sec

Stopping
Distance

Braking Accelera-
tion

Correlation Tests 0.9997 0.9876 0.9921
Avg. Abs. Diff. 0.7981 1.399 1.145

The high positive correlation values, close to 1, indicate
that the system learned to mimic what the expert does.
This means that when the expert increased braking
pressure the NN also increased braking.  The table
shows the average absolute difference between the
expert and the system.  The stopping distance for the
stopping distance was 0.7981 pixels with SD of 0.7883.
Considering that the resolution used in the simulation
was 1/2 mile for 145 pixels or 18.21 feet per pixel, a
mean absolute difference of 14.5 (equals 0.7981 pixels)
for stopping distance is actually 0.55% error.  It is
evident that the actions learned by the system fall well
within the expert’s upper and lower bounds.  As a
matter of fact, the system actions almost overwrite the
mean expert actions, see figure # 3.



Expert Mean vs. NN Actions
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Figure # 3. Expert mean and system actions for
a traffic light at 42 seconds.

8. CONCLUSION

The described research represents a methodology for
the acquisition of expert implicit situational knowledge
by "observing" the expert behavior while interacting with
the simulation.  It focuses on acquiring the expertise by
allowing the expert to demonstrate his/her know-how
rather than by the traditional query session
methodology.  The benefits of such an approach
eliminate many of the problems encountered with the
traditional knowledge engineering methods and permits
learning new implicit knowledge which can not be
described in symbolic forms.  The ideas formulated by
SAM can be applied to different types of simulations.

References

Boose, J. H., and Gaines, B. R. 1989.  Knowledge
acquisition for: Knowledge-based systems:
Notes on the state-of-the-art. Machine Learning,
4, pp. 377-394.

Dreyfus, H., and Dreyfus, S. 1992.  What Artificial
Experts Can and Cannot Do. AI & Soc.,
Springer-Verlag, 6: 18-26.

Garland, D. J., Phillips, J. N., Tilden, D. S., and Wise,
J. A.  1991.  Theoretical Underpinnings of
Situational Awareness:  Towards an Objective
Measure Final Report  (Report No. CAAR-
15498-91-1)  Daytona Beach, FL:  Embry-
Riddle Aeronautical University, Center for
Aviation/Aerospace Research.

Gonzalez, A., and Dankel II, D. 1993.  ENGINEERING
OF KNOWLEDGE-BASED SYSTEMS: Theory
and Practice, Prentice Hall.

Horne, W. G.  1993.  Recurrent Neural Networks:  A
Functional Approach.  Ph.D. dissertation,
University of New Mexico.

Lee, S., and Shimoji, S. 1991.  Machine acquisition of
skills by neural networks.  In International Joint
Conference on Neural Networks, II, pp. 781-
788, IEEE.

McGraw, K. L., 1989.  Knowledge Acquisition:
Principles and Guidelines. Prentice Hall,
Englewood Cliffs, N.J.

Sidani, T. A. 1994.  LEARNING SITUATIONAL
KNOWLEDGE THROUGH OBSERVATION OF
EXPERT PERFORMANCE IN A SIMULATION-
BASED ENVIRONMENT.  Ph.D. dissertation,
University of Central Florida.

Slatter, P. E. 1990.  Models of expertise in knowledge
engineering. In: Hojjat Adeli (Ed.),  Knowledge
Engineering: Volume I Fundamentals. McGraw
Hill, Inc, pp. 130-156.

Waltz, E., and Llinas, J. 1990.  Multisensor Data
Fusion, Artech House, Inc, Boston.


