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ABSTRACT:  The development and use of Inter-Vehicle Embedded Simulation Technology (INVEST) offers several
distinct advantages for 21st Century training environments.  Benefits of embedded simulations include the ability to
perform “in-situ” exercises on actual equipment, more direct provision of support for the wide array of equipment in
the field, and a greater opportunity to develop new training exercises using much shorter lead times than previously
possible with stand-alone training systems.  Nonetheless, the INVEST program also presents several challenging, yet
surmountable obstacles to interconnecting the real and virtual layers within their actual environments.  These
challenges include 1) how to more efficiently and effectively create, refine and maintain vehicle models, and 2) how to
optimize the operation of these models within the INVEST environment, so as to best utilize the computing resources
available on board the vehicle and the available communication bandwidth.  Addressing these technology challenges
remains a prerequisite to the feasibility of realistic INVEST simulations involving ground combat vehicles.  In this
paper, we describe a multifaceted investigation aimed at addressing these tasks.

1.  Introduction and Problem Definition

The U.S. Army has realized significant benefits through
the use of linked simulators to enable federate-level
exercises on stand-alone trainers.  A successful transition
to INVEST simulations, however, will require new
techniques for the incremental development and
distributed processing of massive quantities of vehicle
models. In particular, each entity that participates in the
simulation will require either construction or adaptation
of a unique instance of its vehicle model in order to
properly simulate its interaction with the other entities in
the exercise.

Proper model development can be difficult as well as
expensive, as models must cover numerous situations.  To
represent all situations explicitly, and to gather them
manually is a truly significant undertaking. One realistic
approach to overcoming this model generation bottleneck
is to create and refine vehicle models through automated
observation of the behavior of the entity in question while
being controlled by a human.  An automated model
generation approach addresses both the challenges of

developing the necessary quantity of models and the
requirement for production on relatively short notice.

Furthermore, once each vehicle model is developed and
deployed, it must be continuously correlated with the
actual behavior of the physical entity throughout the
duration of the training exercise. Thus, one of the primary
technical difficulties is the need to convey and assimilate
the large amount of positional, operational, and status
information exchanged between players.  Clearly, it is
necessary to make this data available within a timeframe
suitable for real-time interaction, yet utilize as little as
only 2400 bits per second peak bandwidth which is
available per player, as in the Army’s currently available
Range Data Measurement System (RDMS). Thus, the
challenge is to take advantage of the distributed
processing resources available in the INVEST
environment to compensate for the decreased
communication resources.

We address the aforementioned problems with an
integrated approach to vehicle model generation and
optimization.  This paper will describe in detail the
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concepts and tasks involved in developing the automated
vehicle models through observation of an expert’s
performance in a simulated environment.  Once the
automated vehicle models have been developed, we will
introduce appropriate model monitoring and correction
procedures to ensure that the vehicle models faithfully
reproduce the vehicles' behavior.  Lastly, we will take into
consideration the available computational and
communication resources on board the vehicle in order to
optimize the model to best take advantage of these
existing resources.  At the completion of our work we
expect to have accomplished the following:

• Develop a vehicle model framework for INVEST,

• Demonstrate the feasibility of automated model
development techniques,

• Determine the computation/communication
requirements in INVEST environments for the
developed models.

2. Technical Objectives

Our main objectives in this investigation are:

• Model definition, generation and refinement, and

• Model processing optimization

These objectives are discussed in greater detail in the
sections below:

2.1 Model Definition, Generation, and Refinement

Behavior modeling has been extensively researched in the
past several years, mostly as part of the Computer
Generated Forces (CGF) effort sponsored by DOD.
Several approaches have been devised and implemented
to control simulated enemy as well as friendly forces in a
training simulation.  ModSAF and CCTT-SAF have been
the major efforts undertaken.  They model reactive
behavior through if-then-else constructs in a conventional
programming language.  While successful in many ways,
the knowledge engineering effort involved in developing
these models is quite extensive.  Such existing models
may be usable as the models to be employed in the
proposed project.  However, it is likely that it will not be
highly applicable due to the great variability in the
behaviors to be represented.  Therefore, a difficult and
long model development (or modification) process would
ensue. One way to overcome this model generation
bottleneck is to develop and implement a way to
automatically or quasi-automatically create and refine
these models.

The knowledge necessary to build an accurate cognitive
model of the decision-maker in a fighting vehicle can be
said to be composed of two different elements:

• General a-priori explicit knowledge about the
mission, the battle, the enemy and the capability of
the decision maker’s own vehicle, and

• Tactical knowledge (both explicit and implicit) used
to determine the desired course of action as a result
of the current situation

We believe that the explicit a-priori knowledge can be
best acquired through a question and answer session
between an expert decision-maker and an automated
knowledge acquisition tool.  We believe that the tactical
knowledge, on the other hand, can be best learned through
automated observation of an expert decision-maker
executing the task(s) on a simulated environment.  Our
approach will be to minimize the former and develop the
means to do the latter.  However, before entering in a
discussion of these techniques, it is important to describe
the modeling infrastructure that we believe can support
the techniques to automate the model generation and
refinement process.

2.1.1 Model Definition

In confronting real-world computing problems, it is
frequently advantageous to use several computing
techniques synergistically rather than exclusively,
resulting in construction of complementary hybrid
intelligent systems.  With this in mind, we address the
current problem using a combination of modeling
paradigms.  The basic model structure will be founded
upon a modeling paradigm referred to as Context-based
Representation (CxBR) [1].  This approach equates the
situation being faced by the decision-maker to a context
that carries with it a set of predetermined procedures
typical of that entity’s expected or required behavior
under those conditions.

Briefly, life for a modeled vehicle under the CxBR
paradigm is being under the control of a sequence of
contexts, which at any one point in time, represent the
expected behavior of that vehicle.  Which context is in
control of the modeled vehicle is dependent upon the
situation faced.  The context in control (the active context)
not only defines the vehicle’s behavior, but also what to
expect from the environment.  Since only a limited
number of things can be expected to happen under any
one context, the search space for a situational awareness
module is neatly trimmed to only those that are realistic
under the presently-active context.  Thus, the modeled
vehicle goes through a simulation transitioning from one
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context to another, depending on which ones best address
the situation at hand.

Contexts are defined as hierarchies of increasingly less
abstract ones.  At the top of the hierarchy is the Mission
Context, which defines the mission to be undertaken by
the vehicle to be modeled.  This broadly defines the
objectives, the constraints and the opportunities of which
to take advantage during the execution of the mission.  It
may also define which lower level contexts are applicable
to this mission.  At the next lower level are the Major
Contexts, which form the backbone of the CxBR
technique.  These contexts represent the high-level
maneuvers and actions that the vehicle expects to execute
when under the applicable situation.  It also defines what
criteria indicate that a transition to another major context
is necessary because of changes in the situation.  At the
lowest level of the hierarchy are the sub-contexts.  These
are low-level operations that may be required as part of
the major context, but that may be reusable by another
major context.  CxBR operates by determining the
appropriate major context and making it active.  This
context will control the behavior of the vehicle and will
also look for changes in the situation that may warrant a
transition to another context.  If changes in the situation
warrant it, the current context will deactivate itself and
activate the one selected for transition, thus maintaining
appropriate control of the vehicle.

We should briefly mention that successful prototypes
based on the CxBR approach have been implemented in
the domain of submarine warfare for NAWC-TSD [1], as
well as for automobile driving [2] [3].   This concept has
generated some interest from other researchers as
indicated in the published technical literature [4] [5] [6].

2.1.2 A-Priori Knowledge Acquisition

Explicit knowledge has traditionally been relatively easy
to elicit from experts through interview sessions.
However, these sessions have also been long, drawn out
processes that have taxed the patience of many system
developers as well as experts.  Furthermore, the long
times typically taken to carry out this process has always
resulted in high development costs.  One way to facilitate
the acquisition of explicit knowledge has been to develop
tools that can interact with an expert and elicit the
requisite knowledge from him/her through a question and
answer dialogue.  This has been a relatively successful
field of research, with several systems having emerged
from the laboratories.

We believe that the use of CxBR as the base paradigm in
our work will further facilitate this process.  This is
largely due to the highly structured nature of the context-
based representation and reasoning approach.  A Q&A

session with the experts will allow an automated
knowledge acquisition tool based on CxBR to define the
various contexts applicable to the mission being
undertaken.  This will include definition of the goals and
constraints of the mission, as well as of the various
contexts potentially being experienced by decision-maker.
The feasibility of this approach to model development
was shown by Henninger [2] [7] in her work to design
and develop an automated knowledge acquisition system
that gathers exactly this type of knowledge.  We therefore
propose that this method be used to automatically obtain
the explicit knowledge known a-priori by the vehicle.
Henninger’s work can be used as the basis for this phase
of the research.

2.1.3 Learning Through Observation

The transition from one context to another, a key element
of context-based behavior representation, however,
cannot be easily obtained through a question and answer
session.  Such transitions are the essence of tactical
knowledge.  We believe that this knowledge is best
learned through the process of observation.

By observation we refer to the concept of learning about a
behavior to be emulated by observing a manned vehicle
as it performs that behavior in battlefield situations
similar to that to be seen by the model.  This has the
additional advantage of being able to capture the subtle
behaviors not clearly articulated by experts in the field.

While learning through observation is a relatively new
concept, there is some precedent in the literature
Pomerleau, using a neural network, designed an
autonomous vehicle system that was able to drive an
automobile throughout the Carnegie-Mellon campus [8].
The neural network was trained by observation, and it was
able to generalize after its training was completed.  In
particular, although the neural network was trained to
drive the vehicle through a one-lane road under ideal
environmental conditions, it was able to perform
satisfactorily in two-lane as well as in dirt roads, and
under adverse environmental conditions (rain, snow, etc.).

More recently, Sidani [9] [10] captured the behavior of an
expert automobile driver by observing his/her actions in a
simulated task.  He built a hybrid system based upon
neural networks and symbolic reasoning which learned
and then emulated the expert driver’s behavior.  The
system was successful in operating a car in a traffic signal
situation as well as in the presence of a pedestrian
crossing the street in front of the vehicle.  The interesting
aspect of this work was that the model was trained in the
traffic light and in the pedestrian situations separately.
Yet, when combined in a complex situation that it had not
seen before, it was able to carry out the correct actions
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(i.e., stop for the pedestrian crossing in spite of the light
being green).

Sidani’s work provides an excellent starting point for our
proposed task of partially developing a model through
observation.  However, additional work must be done to
make this idea a useful reality.  First of all, Sidani
identified a-priori all the parameters to be employed in the
neural network training.  This is often not realistic.  On
the other hand, to employ all possible parameters in the
simulation will make for highly complex and probably
untrainable neural networks.  A means to determine the
applicable variables in the simulation will be investigated
as part of this investigation in order to make the technique
useful.  Furthermore, the use of neural networks as the
main modeling paradigm may not be adequate by itself
due to the weaknesses normally associated with neural
nets: difficulty to train and review the logic behind its
actions.  This last issue becomes important when
validating the model’s performance.  Lastly, the domain
of ground warfare is many times more complex than that
of driving an automobile, and thus will likely require a
more complex modeling paradigm than the latter domain.
There will certainly be a need for a certain amount of a-
priori knowledge before the observation process can
become effective.

2.2 Model Processing Optimization Task

The transition to real-time simulation and model
deployment in an INVEST environment presents three
challenges when compared to simulation in a Distributed
Interactive Simulation (DIS) environment.  First, an
INVEST simulation potentially involves more entities
than those used in DIS. Second, the communication
bandwidth available in an INVEST environment is
several orders of magnitude less than that of DIS. Third,
INVEST communication latencies are longer than those
which occur in DIS.  Specifically, a realistic INVEST
exercise may require coordination of roughly an order of
magnitude more entities than are currently feasible in
real-time with state-of-the-art DIS systems, but the
INVEST simulation must do so utilizing a communication
bandwidth which is a fraction of what is available for
DIS.  For instance, a 10Mb/sec Ethernet link or
100Mb/sec channel per DIS simulator will necessarily be
reduced to a collection of low bandwidth links with an
effective throughput of only thousands of bits per second
each.  Moreover, the communication latency will be
increased due to the distances and signal processing
requirements of data transmission in the field, as opposed
to DIS simulators directly connected to ports or routers on
a Local Area Network (LAN).

Utilization of dead-reckoning models of entity behavior
has already proven to be useful in reducing

communication in LAN-based DIS exercises [11].  The
proposed task is to extend the processing and
communication abilities of the dead-reckoning technique
to include the use of the adaptive models generated for the
INVEST environment. A promising approach is to
employ pairs of concurrent models that reduce inter-entity
communication requirements by predicating certain
aspects of the behavior remote entities [12].  As in the
typical first-order linear dead-reckoning techniques, the
entity’s update requirements are reduced because certain
behaviors can be anticipated in advance by the model.
For instance, the required information about the current
position of a remote vehicle can be inferred from its
previously known position and velocity vector.  This
utilizes local computation to model remote behavior
rather than requiring updates to be continually transmitted
by the remote entities.

The concurrent model approach examines extending these
to other types of entity behaviors.  In particular, a high
fidelity model of the vehicle is executed on the remote
subject vehicle, which is then tuned in a closed-loop
fashion.  Simultaneously, a replica or clone of this vehicle
model is executed on the local platform.  Periodically, the
necessary adjustments to the replica model are transmitted
from the remote vehicle to allow the two models to again
become coherent.  Thus, whenever the remote and local
models remain coherent, updates need not be transmitted
from the remote model.

Since excess communication capacity is minimal in an
INVEST environment, the tradeoff between
communication bandwidth and computational resources
using concurrent models is extremely critical.  To make
even linear interpolations functional will require optimal
use of the available communication bandwidth.
Furthermore, the vehicle platform must have a sufficient
amount of surplus computational cycles to model all of
the remote entities within its current field of view or
influence.  Thus, the fundamental issues are to identify
and optimize the processing and communication tradeoffs
in the particular models developed for the ground
vehicles.

3.  Work Plan

In order to achieve the objectives set out above, the
following tasks are or will be in progress:

Task #1: Requirements Generation - This task
encompasses the collection and/or generation of the
required elements to permit project startup.  This includes
the determination of the computing environment, the
infrastructure to be used for the observation (ModSAF),
as well as the scenario to be used in the testbed.



5

Task #2: Model Framework Development - One of the
most significant contributions to be made by this
investigation will be the development of an efficient
cognitive modeling framework that will optimize the
computational and communication resources available
within the INVEST program. Furthermore, the modeling
framework developed should allow for ease of model
development, as will be described in Task #3 below.  This
task will develop that framework.

Task #3: Develop Observational Procedures for Model
Generation - The second most important contribution
expected from this project is the development of
techniques that facilitate the development of model
instances from the defined framework. Capture of implicit
knowledge represents a challenge that can best be
overcome through observational techniques.  This is one
of the most difficult aspects of this project and the one
with the greatest technical risk.

Task #4: Develop on-line Model Monitoring Procedures -
It is important to know when a model, placed in service
and executing its mission in a training simulation
exercise, no longer accurately predicts the behavior of its
corresponding manned vehicle. Furthermore, a model
developed using this framework cannot become static
after initial development.  It must be continually refined
and improved to maintain its representational accuracy.
A model that gradually degrades (due to possibly, change
in doctrine, or a general improvement in task performance
by the experts) will slowly disintegrate into a situation
that calls for increasingly more communication activity
until the capacity is exceeded.  Monitoring of the model
during its on-line use provides us with several
opportunities for functional and performance
optimization. The main goals of this task are to
continuously monitor model behavior and compare it to
observed human performance in order to: 1) minimize the
time that the model is not in use, 2) improve the model
when compared to expert performance.

Task #5: Testbed Development - This task will have as its
main objective the construction of a vehicle model
integration testbed for INVEST.  The Model Integration
Testbed  (MINT) will be used to develop and optimize the
vehicle models developed for the INVEST program.

Task #6: Processing Optimization - The processing
optimization task will identify and resolve the processing
bottlenecks in the implemented vehicle models using the
MINT testbed. The overall goal is to determine the
processing and communication requirement needs per
entity and the number of entities possible within the
fidelity requirements of the INVEST environment.

4.  Anticipated Benefits

The anticipated benefits of the proposed integrated
approach to vehicle model generation and optimization
include:

• Development of a vehicle model framework for use
in INVEST - We cannot underestimate the
advantages of successfully completing the task of
developing a framework for automated generation of
a model for a manned vehicle in the battlefield. In
doing so, we will have provided a methodology for
efficiently and successfully emulates human behavior
in a complex environment affected by a variety of
forces. This framework will be instrumental in
assisting the Army in developing and maintaining
vehicle models for the INVEST program.

• Demonstrate feasibility of automated model
development techniques - If our effort of modeling
the behavior of a manned vehicle in the battlefield is
successful, we would have accomplished this goal by
using powerful AI technologies, such as context-
based reasoning, template-based reasoning, neural
networks and fuzzy logic. Since the ideas that lie
behind the successful use of these technologies are
generic, we could utilize our approach to solve
problems of similar nature. For example, although
our effort will focus on modeling the behavior of a
few manned vehicles in the battlefield, we expect to
be able to extend our experiences to virtually any
battlefield vehicle whose behavior needs to be
emulated. Furthermore, the techniques developed to
observe the expert’s behavior could also be used to
observe and evaluate a  trainee’s performance. This
can be used as part of the after-action review.

• Determine Computation / Communication
requirements in INVEST vehicles - During the
process of designing an appropriate model of the
behavior of a manned vehicle in the battlefield, we
will conduct an investigation of the computation and
communication requirements needed to do so. Since,
as we have mentioned above, our approach in
designing such models will be as generic as possible,
we will be able to make a good estimate of the total
communication/computation requirements of the
manned vehicles that participate in a realistic military
exercise. Hence, we will be able to assess the
feasibility of our approach in INVEST environments
for realistic military scenarios.

• Construct and optimize a model testbed for INVEST
- The Model Integration Testbed (MINT) for
INVEST will be developed around entity attribute
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management concepts.  The protocols developed,
implemented, and optimized within the MINT testbed
will add new functionality to the services layer, in
addition to optimizing the vehicle models themselves.
These new services will provide protocol support for
low-bandwidth interconnected distributed
simulations.  Furthermore, the MINT testbed routines
will be parameterized so that the impact of new
communication and processing technology can be
readily evaluated in realistic scenarios.  By simply
updating the bandwidth, latency, and throughput
parameters used, the benefit of new technologies
under consideration for INVEST can be evaluated
directly for any number of simulation scenarios,
without incurring the expense to procure, install, and
debug the new equipment in the field.

5. Summary

The on-going investigation promises to develop an
innovative means of generating, refining, and maintaining
vehicle models for use in the invest project.  This will
provide an efficient and effective way to create, validate,
and maintain vehicle models easily.  Furthermore, the
project will also optimize this model in order to best
utilize the computing resources available in the INVEST
vehicle, and the communication bandwidth allocated to
the training exercise.

Although our effort will focus on modeling the behavior
of a few types of manned vehicles in the battlefield, we
expect to be able to extend our experiences to virtually
any vehicle whose behavior needs to be emulated.

The most direct means of optimizing the distributed
processing activities within the constraints of the INVEST
environment are to consider the bandwidth, latency, and
throughput requirements throughout the model
development process.  Bandwidth optimization can be
achieved through a statistical analysis of the type of
messages (positional, operational, status) that need to be
communicated to preserve the situational context.  Next, a
technique for hiding latency is then employed by caching
parameters and updates to the models during idle periods
of the communication channels.  This serves to pre-fetch
some of the needed data so that at least part of the
context-shift information does not have to be transmitted
in real-time.  When these optimizations are in-place, then
throughput enhancement can be achieved through data
dependence analysis, which identifies those tasks in the
model that can be performed concurrently.  A static
analysis of these tasks at compile-time best determines
their initial allocation to the processor(s) available within
the vehicle.
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