
1

ABSTRACT

This paper presents a method for representing temporal interval relations using a bit-

encoded form of the relationships between interval end-points. The set of bit patterns for each

interval relationship yields a unique, single-byte signature that forms the basis of a binary

temporal algebra. Also presented is a matrix multiplication algorithm for computing transitive

relations based on the definition of sum and product operations for the bit-encoded relation

signatures. This bit-encoding encompasses the representation of unknown relations between

endpoints of two intervals and captures ambiguities within a temporal system while providing an

efficient binary algebra. Finally, an algorithm to compute the transitive closure over a set of

intervals forming a temporal system is presented. The algorithm’s complexity is analyzed and is

O(n3), worst case, where n is the number of temporal intervals within the system. Empirical

observations indicate that the closure algorithm completes in O(n2) time, on average. The small

memory footprint for the bit-code, the algorithmic transitive relation calculation, and the closure

algorithm, together, form an efficient method for providing machine-based temporal reasoning

capabilities.

An Interval-based Temporal Algebra Based on Binary Encoding of Point
Relations

Vincent J. Kovarik Jr.
Software Technology, Inc.

1225 Evans Road
Melbourne, FL 32904

Vince_Kovarik@mlb.sticomet.com

Avelino J. Gonzalez
Department of Electrical and Computer

Engineering
University of Central Florida

Orlando, FL 32816

2

1. Introduction

In [Allen, 1984], a temporal logic based on intervals was proposed. An interval-based

approach provides a more accurate model of actions and events in the world. The representation

is based on the premise that events take temporal “space” and are not simply point-based, as in

[Vilain, 1982]. Restricting a temporal representation to absolute points limits the range of

problems that the system is capable of addressing. The interval-based approach has been the

catalyst for many other research efforts that view temporal relationships in the same light. This

comprehensive treatment evolved out of earlier papers [Allen, 1983a and Allen, 1983b] which

first defined the temporal logic. This logic, based on a typed, first-order predicate calculus,

consists of six basic relationships, their inverses, plus the identity relationship (=), as illustrated in

Figure 1. These interval relationships capture the relationships between two intervals in a logical

and qualitative fashion.

X Y

X

X

X

X

X

Y

Y

Y

Y

Y

X precedes Y

X meets Y

X overlaps Y

X starts Y

X during Y

X finishes Y

Y

X X equals Y

Figure 1. Fundamental Temporal Relationships

3

Table 1 below provides a reference for each relationship, its inverse and the abbrevations

used through out this paper.

Relationship Abbreviation Inverse Abbreviation

Precedes p Is preceded by p-1

Meets m Is Met by m-1

Overlaps o Is Overlapped by o-1

Starts s Is started by s-1

During d Contains d-1

Finishes f Is Finished by f-1

Equal e Equal e

Table 1: Relationships and their abbreviations

However, ambiguities arise computing the relation when interval relationships do not have

discrete values. For example, assume the assertions that interval A precedes B, (A p B), and B

during C, (B d C). In computing the transitive relationship between A and C, the potential

relationships between A and C could be any one of precedes, meets, overlaps, starts, and during.

None of these violate the relationships asserted between A and B or B and C. This ambiguous

transitive computation is illustrated in Figure 2.

4

A (p) C

BA (m)

A (o)

A (d)

A (s)

Figure 2. Ambiguous Transitive Computation

When describing complex interactions between entities involving multiple temporal

intervals, ambiguous relationships occur frequently. Computing the transitive closure over a set

of temporal intervals, becomes intractable for large sets of intervals with moderate ambiguity. For

example, take the set of relations, A precedes B (A p B), B during C (B d C), and C contains1 D

(C d-1 D). The relationships asserted between A and B, and B and C yields the set of possible

transitive computations between A and C previously shown in Figure 2. Computing the transitive

relations between A and D, requires that each of the five possible computed relations between A

and C be evaluated in the transitive computation. Thus, the transitive calculation is performed for

each of the five possible relationships between A and C (A <p, m, o, s, d> C) is computed with

the relationship between C and D (C d-1 D). The result is union of the computations obtained for

each of the five relationships between A and C and the relationship between C and D. forms the

set of potentially valid relationships between A and D. The algorithm must, in essence, follow

divergent paths when it encounters an ambiguous condition.

1 Contains is the inverse of during. Thus the use of the symbol di to denote the relationship (C di
D) is used.

5

Applying Allen’s algorithm for computing transitive closure over a set of temporal

relations has previously been shown to be NP-hard [Vilain and Kautz, 1986]. The intractable

nature of the full interval-based temporal algebra has resulted in several research directions

focusing on alternative representations for temporal systems. Vilain [1982] developed a point-

based algebra for temporal systems and [Dechter, Meiri, and Pearl, 1992] developed a

representation utilizing directed graphs. These approaches reduced complexity by limiting the

depth of the representation to achieve polynomial-time performance. Work by Alur and

Henzinger [1994] employs a timed-logic concept that provides a representation tailored more

towards real-time systems and event processing. Constraint-based systems, such as found in Dean

[1987], form a directed graph in which the nodes represent states2 and the arcs are labeled with

temporal data which constrains the minimum and maximum temporal "cost" to traverse the link.

All of the above efforts, however, employ a fundamentally different representation than the

interval-based concept in order to achieve less complexity.

Alternatively, [Dorn, 1992] focused on a subset of the temporal algebra which maintains

the interval as the basic representational unit but uses a directed graph to represent the collection

of interval relationships within a given system. In this approach, the nodes of the graph represent

the intervals and the arcs represent the relationships. This is in contrast to constraint-based

approaches in which the nodes represent states (or points) and the arcs represent durations (i.e.

intervals). The sequence graphs preserve the richness of the temporal algebra but rely on a graph

reduction algorithm to minimize the number of arcs within a sequence graph. This algorithm is

dependent on the width and length of the interval graph. The width is the maximum number of

concurrent intervals and the length is the longest possible sequence chain. Problems arise because

the width of a sequence graph is not easily determined and can limit the effectiveness of the

representation for systems of highly parallel tasks.

2These are similar to the states in situational calculus.

6

2. Bit-encoded Temporal Representation

Our research focuses on finding a tractable means of computing the transitive closure over

intervals while maintaining the richness of the temporal algebra. This section presents the bit-

encoded temporal algebra that represents a solution to the problem. As mentioned earlier, the

encoding is based on the unique signatures of each of the basic temporal relations. The signatures

are assigned a binary value based on the set of end-point relationships for the interval relation.

The algebra is first defined in discrete mathematical terms in the balance of this section and is then

elaborated into a data structure and algorithm in succeeding sections.

When describing the temporal intervals defined by Allen, references are made to the start

and end of the intervals in question. Allen and Hayes [1985] provide a stepwise development of

the thirteen temporal relationships based on the single relationship "MEETS." They also present

the concepts of "instantaneous" events that were called "Nests." These are described as the

"beginning or ending" of intervals. The important aspect of nests is that they are of very small

duration and, thus, take on the properties of points within the temporal calculus.

The essential quality of nests is that they have the properties of points and, thus, are totally

ordered. Thus for any two nests N and M, either N<M, M<N, or N=M. These nests form an

initial starting point for the development of the theory presented here.

Although Allen categorically states that time points are unnecessary in understanding

temporal relationships [Allen, 1983a] the description of the interval relationships, nonetheless,

refer to the start and end of an interval as a discrete point in time. The work presented in this

paper is based on the relationships that exist between the start and end points of intervals. These

relationships exist between bounding intervals that identify and bound the temporal interval.

Intervals can be ordered based on the sets of relationship values that are asserted between

the start and end points of the intervals. The relationship between the start and end bounding

intervals for each interval is implicit within the description. In order to facilitate any further

7

discussion, the following section defines some of the terminology and concepts to be used in this

article.

2.1 Definitions

A temporal point, p, has a scalar value representing the magnitude of the temporal value.

This magnitude represents the displacement from some arbitrary starting point of the temporal

system. The start of the temporal system is referenced as zero and all temporal points in the

system have a positive magnitude with respect to the starting point of the temporal system.

Let P be the set of temporal points {p1, p2, p3, …., pn} where any point, pi, in set P has a

magnitude representing the time for that point. For any two temporal points, there may be six

possible relationships. These are:

pi < pj,

pi <= pj,

pi = pj,

pi >= pj,

pi > pj, and

pi <=> pj

where <=> represents an unknown relation.

An interval i is represented as a pair of points (pi, pj) where pi is the start of the interval

and pj is the end. Let an interval, i, be represented as such an ordered pair of points, (pi, pj),

where the relation, pi <= pj, holds. Let I, then be the set of intervals formed from pairs of points

in the set P. Thus, I = {i1, i2, … in} where i1 = (pi, pj)1, i2 = (pk, pl)2, … in = (px, py)n. Thus, an

interval may be represented which has a duration of zero magnitude or greater.

Let an interval relationship, r, consists of the set of the relationships existing between each

of the points specified by the individual interval, i. Thus, if two intervals, i1 and i2, are

represented by the ordered points (p1, p2) and (p3, p4), respectively, then the interval relationship

8

r(i1, i2) consists of the relationships represented by all possible relationship between each of the

points, (p1, p2, p3, p4), which define the intervals.

Finally, let R contain the set of all interval relationships for a given temporal system. Thus

R = {r1, r2, … rn) where r1 is the set of relationships between all points defined by the intervals

that comprise the interval relationship, r1 = (in, im).

The relationship between two intervals may be represented using a directed graph. This

form a node in the graph represents an end point of an interval. The arcs in the graph represent

the ordering of the point according to the definitions above. The directed graph for the

relationship A overlaps B is shown below in Figure 3.

Figure 3: Representing an Interval Relationship as a Directed Graph

If we take the above graphical representation and add to it the graph for the relationship B

overlaps C, the graph presented in Figure 4 is produced.

9

A(s) A(e)

B(s)

C(e)C(s)

B(e)

Figure 4: Directed Graph of A overlaps B and B overlaps C

Thus, the calculation of the transitive relationship between intervals A and C is the

reduction of the directed graph in figure 4 to a graph containing only the nodes for intervals A and

C. To perform this reduction, we must identify paths between each node of interval A and each

node of interval C through each node of interval B or from each node of interval C to each node

of interval A including each node of interval B. Stated differently, in order to derive the transitive

relationship between A and C each possible path must be identified between A and C through B.

Upon inspection, it can be seen that for each of the end points of A and C there exists at

least one path between each end point of one to each end point of the other with the exception of

Ae and Cs. This confirms the fact that for the relationships A overlaps B and B overlaps C, the

transitive relationship is ambiguous with respect to the relation between the end of interval A and

the start of interval C.

2.2 Representing Interval Relations – The Relations Matrix

The relation “signature” between two intervals A and B can be represented by a matrix of

relationships between of each of the interval end-points. Figure 4 displays the graphical

relationship between intervals A and B when (A o B). As shown in Figure 5, the relationship of

10

the endpoints of the two for the relationship overlaps result in the overlaps interval signature

matrix. This representation is similar to the matrix representation described by Sheppard and

Simpson [1992] to represent end-point relations and perform basic transitive computations.

However, where the axes of Shepard and Simpson’s matrix includes all points for both intervals,

the matrix specified herein only represents the essential relationship between the two intervals.

Thus, while Shepard and Simpson’s matrix contains all relationships between all points, it contains

four sub-matrices. Two of these sub-matrices are the identity relationship for an interval with

itself. The other two relation matrices are represent the relationship between the intervals and the

inverse relationship. Since the identity relationship of an interval with itself is always constant,

there is no value added in their inclusion in transitive calculations. Further, the inverse

relationship may be easily computed for any given relationship. Thus, it is only necessary to

maintain the 2x2 matrix representing the actual relationship between the intervals.

The next step is to compute the transitive relation between this interval relationship and (B

o C), which is also depicted in Figure 4. That is, what is the relationship between intervals A and

C? This is first performed using the graphical technique of mapping endpoints to time lines. As

shown in Figure 5, however, a problem arises in that an ambiguity is raised for the endpoints Ae

and Cs.

 As Bs Cs Ae Cs Be Ce

Figure 5. Graphical description of (A overlaps B) and (B overlaps C) with Endpoint
Identification

11

B
start End

A start < <
end > <

C
start End

B start < <
end > <

Figure 5. Matrix Representation of (A overlaps B) and (B overlaps C) Relationship
Signatures

The information expressed in the form of endpoint relationships is explicit enough to

prove that both Ae and Cs are between Bs and Be. However, there is not sufficient information to

explicitly state the relationship that exists between Ae and Cs. Thus, there are three potential

resolutions of the ambiguity, Ae < Cs, Ae = Cs, or Ae > Cs. In other words, any one of the three

possible assignments of a relationship between Ae and Cs could be used without violating the

primary relationships of (A o B) and (B o C).

Figure 6 shows the same relationship between A and C that is shown in Figure 5 between

A and B and between B and C. Note, however that the relationship Ae and Cs is identified in the

representation as ambiguous. This representation captures, in a concise fashion, the fact that

interval A may precede, meet, or overlap interval C.

C
start End

A start < <
end < = > <

Figure 6. Matrix Representation of the Transitive Relation between A and C.

The implication of this statement is that time is unidirectional and that the completion or

end point of some event X, which is represented by the interval, occurs some time after the start

of X. Using these descriptions, we can then develop a set of bounding interval relationships. The

bounding interval relationships for each of the thirteen temporal relationships specify a set of

conditions that must be true in order for the relation to be valid. We can illustrate these

12

relationships by taking the matrix signature representing the relationship between two intervals

and “unwrapping” it in a column-major fashion. This would then give us the relation between

endpoints as follows: As-Bs/Ae-Bs/As-Be/Ae-Be . These are illustrated in Table 2.

Table 2. Interval Relationship Signatures

Relation Signature
Precedes (<) <<<<
Meets (m) <=<<

Overlaps (o) <><<
Starts (s) =><<

During (d) >><<
Finishes (f) >><=

Overlap Inverse (oi) >><>
Meets Inverse (mi) >>=>

Precedes Inverse (>) >>>>
Starts Inverse (si) =<<>

During Inverse (di) <>>>
Finishes Inverse (fi) <><=

Equal (=) =><=

This notion of a unique signature for each relation is a key part of the approach for this

research. It provides a method for assigning a unique code that identifies a specific relation type.

2.3 Mapping Relation Signatures to Bit Representations

Based on the assertion that there may be, at most, four possible relationships, greater

than, less than, equal, and unknown asserted between any two intervals, these four relationships

may be mapped to specific bit representations. For the purposes of our work, the <= and >=

relationships can be said to be subsumed by the others, and thus unnecessary. These bit-encoded

relations are summarized in Table 3.

Table 3. Bit Encoded Temporal Relationships

Relation
Bit Code

Representation

13

Equal (=) 00
Less Than (<) 01

Greater Than (>) 10
Unknown (<=>) 11

Mapping these bit-encoded representations for each relationship now provides a distinct,

8-bit representation for each of the temporal intervals defined in Allen's Algebra. These are

illustrated in Table 34.

These relation signatures can be presented using the relation matrix form used previously.

Figure 7 illustrates the bit code representation used to represent an o relationship between two

intervals, A and B, in matrix form.

Table 4. Bit Code Assignment of Interval Signatures

Relation Signature Bit Encoding
Precedes (<) <<<< 01010101
Meets (m) <=<< 01000101

Overlaps (o) <><< 01100101
Starts (s) =><< 00100101

During (d) >><< 10100101
Finishes (f) >><= 10100100

Overlap Inverse (oi) >><> 10100110
Meets Inverse (mi) >>=> 10100010

Precedes Inverse (>) >>>> 10101010
Starts Inverse (si) =<<> 00010110

During Inverse (di) <>>> 01101010
Finishes Inverse (fi) <><= 01100100

Equal (=) =><= 00100100

B
start end

A start 01 01
end 10 01

14

Figure 7. Matrix Representation of A overlaps B Using Bit Codes

2.4 Temporal System Matrix Representation

The relation matrix adequately describes a relation between two intervals. However, it is

also necessary to represent in a similar fashion the global relations between all the intervals in the

temporal system. This is done through the temporal system matrix.

In this matrix, both axes contain each of the temporal intervals that compose the temporal

system. The diagonal, of course, represents the relationship of each interval to itself, and is

therefore, insignificant. However, all other elements of the matrix represent the relationships

between intervals. The relations represented in the upper triangular part of the temporal system

matrix represent the relation between the vertical and the horizontal axes, in that order. The

relations represented in the lower triangular part of the matrix, on the other hand, represents the

relations between the horizontal and vertical axes, or in other words, the inverse relation of that

shown in the corresponding location in the upper triangular matrix. How these inverses are

computed is described in detail in section 3.3 below. This temporal system matrix can thus

represent all the relations explicitly defined as well as all computed transitive relations.

Each element of the matrix consists of a string of four decimal digits between 0 and 3,

where 0 through 3 correspond to the underlying bit encoding of the relationship between the end

points. Thus, 0 ≡ 00, 1 ≡ 01, 2 ≡ 10, and 3 ≡ 11. An example of a temporal system where the

transitive closure between intervals has already been calculated is shown as figure 8.

 00 01 02 03 04 05 06 07 08 09 10 11
 00 (----)(1121)(1121)(1111)(1111)(3131)(3333)(1111)(1111)(2120)(3131)(3131)
 01 (2122)(----)(3123)(1133)(1133)(3133)(3333)(1133)(1133)(2122)(3133)(3133)
 02 (2122)(3123)(----)(1101)(1111)(3121)(3323)(1111)(1111)(2122)(3131)(3131)
 03 (2222)(2323)(2022)(----)(1133)(2121)(2323)(1133)(1133)(2222)(3133)(3133)
 04 (2222)(2323)(2222)(2323)(----)(2323)(2323)(1101)(1111)(2222)(3121)(3121)
 05 (3322)(3323)(3122)(1122)(1133)(----)(2122)(1133)(1133)(3322)(3133)(3133)
 06 (3333)(3333)(3133)(1133)(1133)(1121)(----)(1133)(1133)(3333)(3133)(3133)
 07 (2222)(2323)(2222)(2323)(2022)(2323)(2323)(----)(1120)(2222)(2121)(2121)
 08 (2222)(2323)(2222)(2323)(2222)(2323)(2323)(2120)(----)(2222)(2121)(2121)
 09 (1120)(1121)(1121)(1111)(1111)(3131)(3333)(1111)(1111)(----)(3131)(3131)
 10 (3322)(3323)(3322)(3323)(3122)(3323)(3323)(1122)(1122)(3322)(----)(0121)
 11 (3322)(3323)(3322)(3323)(3122)(3323)(3323)(1122)(1122)(3322)(0122)(----)

15

Figure 8. Example of temporal system matrix consisting of 12 intervals

Thus, in Figure 8, the entry at row 00, column 01 represents the relationship between

interval 00 and 01. The value of 1121 in this entry represents the end point relationship matrix in

row-major order. Thus, 1121 corresponds to a bit signature of 01011001 represented in matrix

form below.

01
start end

00 start 01 01
end 10 01

Figure 9: Matrix Representation of Overlaps Relationship Between Intervals 00 and 01

The signature for this matrix is 01100101 or (<><<) which is the signature for the

overlaps relationship. So, therefore, the above entry states that interval 00 overlaps interval 01.

2.5 Summary

The above section describes how to represent temporal events as bit-encoded strings.

Calculation of the closure is performed by logical bit operations on the signature relations

between the two relation-interval pairs over which the closure is desired. Using the example of

(A o B) and (B o C), the computation of the transitive closure (A,C) is described in the following

section.

3. Transitive Relation Computation

Computing the transitive relationship between any two relationships can now be calculated

by defining the Sum and Product operations within the domain of the bit-encoded forms and

applying the procedure of matrix multiplication.

16

3.1 Binary Matrix Operations

There are two basic operations that can be performed in the interval algebra. These are

the sum (⊕) and product (⊗) operations. The sum operation in the algebra is defined as a binary

inclusive and of the two bit codes. The product is defined to be the binary or of the two bit codes

representing the relations. The sum and product operators shown are also consistent with

symbolic versions of relation operators defined by Sheppard and Simpson [1992].

3.1.1 Product Operation. The relation product is shown in Table 12 below. The

product operation is a binary or over the end point relation codes. A logical or is applied because

the product of two terms in the binary algebra represents the combination of all possible

alternatives of the two terms. The or operation provides this logical combination.

Table 5. Product Table for the Temporal Algebra

⊗⊗ 00 01 10 11

00 00 01 10 11

01 01 01 11 11

10 10 11 10 11

11 11 11 11 11

3.1.2 Sum Operation. As previously mentioned, the sum of two terms in the algebra is

formed by taking the logical and of the terms. The binary sum of the two terms represents the

reduction of a set of possible relationships to the relationships that are consistent between the two

terms. Thus, the and operation is used to perform this calculation.

17

Table 6. Addition Table for Temporal Algebra

⊕⊕ 00 01 10 11

00 00 00 00 00

01 00 01 00 01

10 00 00 10 10

11 00 01 10 11

Both the sum and product operators in this algebra are commutative.

The next section presents the transitive closure operation and how it will be computed

using the representation described above.

3.2 Transitive Computation

The key, limiting factor in all temporal reasoning systems is the ability to efficiently

compute full transitive closure over a system of intervals. This process ensures consistency across

all temporal relations within the system and asserts transitively computed relations for those that

have no primitive relation asserted. The transitive computation takes two relations, R1[] and

R2[], which are relations between three intervals, A, B, and C such that (A R1[] B) and (B R2[]

C), and where the relationships and intervals are represented as matrices such as found in figures

7 and 9 above . Computation of the transitive relation, (A Result[] C), is performed as a simple

matrix product applying the sum and product operations defined earlier in this chapter. The

following algorithm describes this procedure.

18

In the algorithm below R1 and R2 represent a relationship between two intervals for

which a transitive computation will be performed. Thus, the second interval of R1 is the first

interval of R2. In the function specification relation names are shown. However, the

computation references the entries in the relation matrix.

ComputeTransitive(R1(A,B)[],R2(B,C)[])
begin

Result(A,C)[] = 0
Result[1,1] ← (R1[1,1] ∨ R2[1,1]) ∧ (R1[1,2] ∨ R2[2,1])
Result[1,2] ← (R1[1,1] ∨ R2[1,2]) ∧ (R1[1,2] ∨ R2[2,2])
Result[2,1] ← (R1[2,1] ∨ R2[1,1]) ∧ (R1[2,2] ∨ R2[2,1])
Result[2,2] ← (R1[2,1] ∨ R2[1,2]) ∧ (R1[1,2] ∨ R2[2,2])
If isAmbiguous(Result(A,C)[]) then

AmbiguousRelations ← Result(A,C)[]
return(Result(A,C)[])

end;

Transitive products may result in an ambiguity. These ambiguous relations are the key

transitive computation process since they are the only relations which may be changed through the

transitive computation without invalidating the relationships within the matrix. Thus, transitive

computations are tested for ambiguity and, if found to be ambiguous, are stored in the set

AmbiguousRelations. This set is referred to during the transitive closure computation to identify

other relationships that may be recomputed during the process.

The result of computing the transitive closure of intervals A and C from the relations

described in Figures 7 and 9 is represented as a matrix of the form found in Figure 10.

C
start end

A start 01 01
end 11 01

Figure 10. Matrix Representation of (A overlaps C) Using Bit Codes

19

Applying the above algorithm, the combination of relationships R1 and R2 (Figs. 7 and 9)

can be accomplished by following the standard ordering for matrix multiplication between two

matrices of equal size. This is illustrated in Figure 11. Row 1 of the first relationship matrix,

consisting of the relationships between the start point of the first relationship and the start and end

points of the second relationship, is matrix multiplied with the left column of the second

relationship matrix.

01

0110

01

10

01

01
As

R1(1,1)*R2(1,1)+R1(1,2)*R2(2,1
)

01 01

0110

01

10

01

01

Ae

Cs

R1(1,1)*R2(1,2)+R1(1,2)*R2(2,2
)

R1(2,1)*R2(1,2)+R1(2,2)*R2(2,2
)

01

0110

01

10

01

01

Ce

R1(2,1)*R2(1,1)+R1(2,2)*R2(2,1
)

R1

01 01

0110

01

10

01

01

R1

R1

R1 R2

R2

As
Ae

As
Ae

As
Ae

As
Ae

Bs
Be

Bs
Be

Bs
Be

Bs
Be

Bs Be

Bs Be

Bs Be

Bs Be

Cs Ce

Cs Ce

Cs Ce

Cs Ce

R2

R2

01

01

Figure 11. Matrix operation ordering for transitive computation

Thus, the transitive computation is performed following the standard procedure for matrix

multiplication. This result of the matrix product operation is shown below.

[] [] [] [] [] [] [] []()

[] [] [] [] [] [] [] []()















⊗⊕⊗⊗⊕⊗

⊗⊕⊗⊗⊕⊗

2,222,212,121,21)1,222,211,121,21(

2,222,112,121,11)1,222,111,121,11(

RRRRRRRR

RRRRRRRR

Figure 10 shows the result of the bit-calculation for the two relations. The cell

corresponding to the relationship between the end of interval A and the start of interval C shows

11 as the value. This is the value resulting from the transitive computation algorithm and

represents and unknown or ambiguous relationship between the endpoints.

20

The problems associated with the computation of transitive closure over a set of intervals

fall into two primary areas, consistency and performance. In the former, the issue is to identify as

early as possible in the closure process any conflicts that will arise due to primitive relation

assignments. The latter is concerned with the performance of the closure algorithm in terms of

computing a complete and average set of closures given a set of intervals and primitive

relationships.

3.3 Inverse Relation Computation and Matrix

The inverse, R−1, of any relationship may be computed in a simple and straightforward

manner. This holds for all the relationships within the temporal algebra. The inverse of a

relationship is isomorphic with the definition of the inverse relationships identified by Allen. The

interval matrix is divided along the diagonal by a set of equal relations corresponding to the

identity operation (i.e. A = A). The two triangular sub-matrices are symmetrical along this axis

with the lower triangular matrix being an inverse of the values in the upper triangular matrix (i.e.

R(i,j) = R-1(j,i)) where i = the row and j = the column of the interval relation.

The inverse operation can be thought of as viewing the relationship via a timeline vector

180 degrees out of phase. This changes the direction of the paths between the end points of the

two intervals. This has the effect of inverting the relationship (i.e. > ⇒ < and < ⇒ >) with the

exception of the equality (=) and unknown (<=>) endpoint relations. Furthermore, the change in

viewing direction or perspective is captured within the individual relationship matrix

representation by inverting the relationships and then transposing the matrix about the diagonal.

ComputeInverse(R[])
begin

Result[] = 0;
If R[1,1] = 01 or 10 then

Result[1,1] ← 11 ∇ R[1,1]
else
Result[1,1] ← R[1,1];

21

If R[2,1] = 01 or 10 then
Result[1,2] ← 11 ∇ R[2,1]
else
Result[1,2] ← R[2,1];

If R[1,2] = 01 or 10 then
Result[2,1] ← 11 ∇ R[1,2]
else
Result[2,1] ← R[1,2];

If R[2,2] = 01 or 10 then
Result[2,2] ← 11 ∇ R[2,2]
else
Result[2,2] ← R[2,2];

return(Result[]);
end;

The ComputeInverse operation performs this inversion of the operators and transposition

of the matrix. The inversion is performed by taking the exclusive-or, XOR, (shown as the symbol

∇∇) of the end point relationship if the relationship is either < or > (i.e. 01 or 10).

3.4 The Bit-mapped Closure Algorithm

As previously noted, Allen’s constraint propagation algorithm has been shown in [Vilain

and Kautz, 1986] to perform on average O(n3). This is the same order of complexity as

Warshall’s algorithm for transitive closure, also shown in [Vilain and Kautz, 1986].

The following section presents a representation of temporal relations based on a bit-

encoded representation of interval end points or “nests” referred to by [Allen, 1985]. This

representation presents a terse coding of the temporal relations. The algebra defined in [Kovarik

1994] provides for the addition of the ambiguous relation, (<=>), not defined in Allen’s

description. This enables the temporal system to represent ambiguous relationships between

intervals

This representation forms the basis for computing transitive relations based solely on the

interval algebra operations defined earlier. This allows for a straightforward algorithm

22

computation of transitive relations without any table lookup. Finally, the complexity of the

transitive closure algorithm developed is dependent on the number of relationships within the

matrix that are ambiguous and not upon the total number of intervals.

The bit-encoded transitive closure algorithm is described in this section. The foundation of

the algorithm is the computation of the transitive relation over three intervals described in section

3.2 above. This computation is based on the graphical foundation presented in the previous

sections. This operation is illustrated below.

The algorithm maintains the relationships in a temporal system matrix. As discussed

previously, the lower triangular matrix entries in a temporal system matrix are the inverse of the

upper triangular matrix entries. Therefore, the lower entries are not calculated as part of the

algorithm. Instead, the algorithm limits the computations performed to the upper diagonal matrix

and the lower diagonal entries are simply calculated using an inverse operation as described in

section 3.3 above.

The ComputeTransitive operation refers to an IsAmbiguous operation that tests whether a

relationship is ambiguous, and returns true if it is or false if not. This operation is shown below.

IsAmbiguous(R[])
begin

If
R[1,1] = 11 or
R[1,2] = 11 or
R[2,1] = 11 or
R[2,2] = 11

then
return(true)

else
return(false);

end;

23

Simply stated, a relation is ambiguous if any endpoint relationship is unknown. Thus, the

above operation checks for the existence of the ambiguous code, 11, in any of the four entries and

returns true or false accordingly.

When adding an interval to the system, at least one relationship must be specified with an

interval previously in the system in order to calculate the corresponding relationships for the new

relationship and the others. This is performed by computing the transitive relationship for each

entry in the column corresponding to the new interval. This operation is shown below.

ComputeColumn(i,j)
begin
For k ← (i - 1) to 0 step -1 do

begin
Table[k,j] ← ComputeTransitive(Table[k,i],Table[i,j]);
Table[j,k] ← ComputeInverse(Table[k.j]);
end;

For k ← (i + 1) to j step 1 do
begin
Table[k,j] ← ComputeTransitive(Table[k,i],Table[i,j]);
Table[j,k] ← ComputeInverse(Table[k.j]);
end;

end;

Again, since the lower diagonal matrix is simply the inverse of the upper diagonal, only the

column entries need be calculated. The corresponding row in the lower diagonal matrix is

populated by computing the inverse for each column entry computed. Thus, for a new interval, a

relation is asserted and then the entries above the asserted relation in the column are computed

and then the entries below the entry are computed.

Relations are asserted into the temporal system matrix through the Add operation. This

operation asserts a relation R[] for an interval pair <i,j> within the matrix. The Add operation is

shown below.

24

Add(R[]<i,j>)
begin
If Table[i,j] is null then

begin
Table[i,j] ← R[]<i,j>;
Table[j,i] ← ComputeInverse(R[]);
ComputeColumn(i,j);
return;

end;
If isAmbiguous(Table[i,j]) then

If isCompatible(R[],Table[i,j]) then
begin

Table[i,j] ← R[]<i,j>;
Table[j,i] ← ComputeInverse(R[]);
Remove <i.j> from AmbiguousRelations;
ChangedRelations ← <i,j>;
ComputeClosure();
return;

end;
else

return(Exception(“Relation is not compatible”));
else

return(Exception(“Relation already defined”));
end;

There are only three possible states that can occur. Either,

1. the relation is being asserted for a new relation and, therefore, the entry in the matrix is
null,

2. the relation is being asserted over an existing relation that is ambiguous, or

3. the relation is being asserted for a location in the matrix which already contains a non-
ambiguous relationship.

In the first case, the relationship can be simply asserted within the matrix, the inverse of

the asserted relationship is calculated and inserted in the matrix, and the remainder of the new

interval’s relationships can be computed via the ComputeColumn operation.

25

In the third case, a relationship is specified for an interval pair which already has a non-

ambiguous relation asserted. Thus, for any relationship that is not equal to the existing

relationship in the table, an error is raised.

In the second case, the matrix entry contains an ambiguous relation and a new, potentially

more specific relationship is being asserted. The IsCompatible operation is called to check if the

relationship to be asserted is compatible with the existing relationship. If so, the newly refined

relationship is removed from the set of ambiguous relationships, if it is non-ambiguous, and it is

inserted into the ChangedRelations queue. If the relationship asserted is not compatible with the

existing relationship then a “Relation is not Compatible” exception is raised.

isCompatible(RAssert[],RExist[])
begin
If

(RAssert[1,1] = RExist[1,1]
or RExist[1,1] = 11
or Rassert[1,1] = 11)

and
(RAssert[1,2] = RExist[1,2]

or RExist[1,2] = 11
or Rassert[1,2] = 11)

and
(RAssert[2,1] = RExist[2,1]

or RExist[2,1] = 11
or Rassert[2,1] = 11)

and
(RAssert[2,2] = RExist[2,2]

or RExist[2,2] = 11
or Rassert[2,2] = 11)

then
return(true)

else
return(false);

end;

If the relation being asserted replaces a previously ambiguous relationship then, in addition

to being inserted into the ChangedRelations queue, the ComputeClosure function is called.

26

The ComputeClosure function removes the first entry from the ChangedRelations queue

and checks it against the remaining ambiguous relations. If it can be used to calculate the

transitive relation for an ambiguous relationship, then the new transitive relation is computed and

asserted into the matrix.

ComputeClosure()
begin

while ChangedRelations is ¬¬null do
begin
<i,j> ← first element of ChangedRelations;
For (each pair <k,l> in

(row i | column i | row j | column j)
where <k,l> is in the upper triangular matrix
and <k,l> is ambiguous)

do
begin

If i=k then
begin

Table[k,l] ← ComputeTransitive(i,j,l);
Table[l,k] ← ComputeInverse(R[k,l]);
ChangedRelations ← <k,l>;

end;
If j=l then
begin

Table[k,l] ← ComputeTransitive(k,i,j);
Table[l,k] ← ComputeInverse(R[k,l]);
ChangedRelations ← <k,l>;

end;
If i=l then
begin

Table[k,l] ← ComputeTransitive(k,j,i);
Table[l,k] ← ComputeInverse(R[k,l]);
ChangedRelations ←← <k,l>;
Remove <k,l> from AmbiguousRelations;

end;
If j=k then
begin

Table[k,l] ←← ComputeTransitive(j,i,l);
Table[l,k] ←← ComputeInverse(R[k,l]);

27

ChangedRelations ←← <k,l>;
Remove <k,l> from AmbiguousRelations;

end;
end;
end;

end;

As shown above, the ComputeClosure algorithm forms the heart of the transitive closure

computation for this algebra. The function is initiated whenever a relation is asserted into the

matrix which refines a previously ambiguous relation in the matrix. The relation is added to the

matrix, the inverse is also inserted into the matrix and the ComputeClosure routine is initiated.

The basic approach of this routine uses the ChangedRelations variable as an input queue

to the closure computation process. The first interval pair is removed from the ChangedRelations

and is checked against each of the interval pairs in AmbiguousRelations. If either of the intervals

in the ChangedRelation matches one of the intervals of the AmbiguousRelation being inspected

then the transitive relation for the AmbiguousRelation is recomputed using the ChangedRelation.

If the newly computed relationship is not ambiguous then it is queued to ChangedRelations and

removed from AmbiguousRelations.

The next section performs an analysis of an implementation of the closure algorithm and

identifies worst case performance. It also presents an implementation of the algorithm and

discusses the realization of the algorithm in code.

4. Implementation and Evaluation of Bit-mapped Transitive Closure
Computation Technique

It is important that the technique presented here be evaluated for its effectiveness. The

evaluation described consists of two main parts: 1) a theoretical complexity analysis of the worst

and the average cases, and 2) an average case empirical test. The latter is composed of several

different types of tests. A number of significant data were collected. These data covered the

different aspects of the algebra, its implementation, and performance. Since the algorithm is

28

critically dependent on the number of ambiguous relations in the system, a test routine was

developed which generated random interval assignments to provide some insight into the number

of occurrences of ambiguous relationships in a totally random system.

Next, timing data was gathered to verify the claims of the algorithm’s performance. This

data was gathered in two forms. The first was an iteration count for the transitive closure

computation. This instrumentation counted the number of cycles executed within the compute

closure function. The second was a collection of timing data for a set of test cases. This provided

two insights into the algorithms and its implementation. First, the cycle iteration provided a

validation of the complexity analysis of the algorithm. Second, the timing data provided both, a

verification of the algorithm’s performance curve with respect to the number of ambiguous

relationships in the system, and provided a cursory indication of the speed of the bit-mapped

transitive relation computation.

4.1 Analysis of Worst-case Complexity

The transitive closure algorithm, ComputeClosure, presented earlier is composed of two

iterative loops. The inner For loop iterates over each relationship in the row and column of the

changed relation. The outer While loop iterates over a queue of changed relations until the queue

is empty. The inner loop of the algorithm iterates over the row and column of each interval in the

changed relation queue rather than the entire set of interval pairs as in Allen’s closure algorithm.

This yields, at worst, 2n computations for each ambiguous relationship. The outer loop consists

continues until there are no further ambiguous relationships in the queue. The worst case is a

totally ambiguous matrix where the number of ambiguous relations is equal to the number of

29

entries in the matrix3 or n2 where n = the number of intervals in the system. Thus, the order of

magnitude of the algorithm’s complexity is n2 * 2n, or O(n3).

The changedRelations queue is initialized to the value of the interval pair for which a new,

unambiguous relation is asserted. This value is dequeued and then each of the relations in the

<i,j> columns of the relation disambiguated is inspected to see if any of the relations can be

recomputed based on the new relation. Thus, the worst case for performance is where a relation

is asserted, the set of ambiguous relations is inspected and no additional relationships are

disambiguated. This results in 4n comparisons for each relation in the ambiguousRelations.

It should be noted that as an unambiguous relation is asserted over an existing relation, the

relation is removed from the AmbiguousRelations set and inserted into the ChangedRelations

queue. The number of maximum comparisons performed by the closure algorithm is 4n*n(n-1)/2

where n is the number of intervals in the system. Thus, the worst case performance of the

algorithm is O(n3).

4.2 Empirical Validation

Four different tests were performed to provide empirical data to validate the algorithm and

its performance. The first test provides an opportunity to observe how the interactive

construction of a temporal system works using the presented technique. The objective of the

second test was to establish a relationship between the number of intervals and the number of

resulting ambiguous relations when the transitive closure was computed. The third test tries to

determine the effect of scaling the algorithm to a large number of intervals to determine its

scalability. Test #4 uses timing data from the other tests to provide an empirical indication of run

3Actually the maximum number of entries will be n2-n because the diagonal of the matrix will
always be the identity (=) relation and, therefore. unambiguous.

30

time and cycles. This is done as a way to verify the theoretical complexity of the algorithm

derived in section 4.1 above.

4.2.1 Test 1: Interactive Construction of Temporal System

This test explored the use of the temporal reasoning system through an interactive

construction. The goal was to provide a detailed trace of actions and results through the stepwise

insertion of new intervals and relations and the refinement of ambiguous relations. A twelve

interval temporal system was constructed and then refined.

The intervals (0 through 11) were created and then relationships asserted between them.

The interval pairs and the relationships asserted are shown in Table 6.

Table 7. Table of Bit-Encoded Relationships

Interval Pair and
Relation

Bit Code Asserted
Number of
Ambiguous
Relations

0 overlaps 1 (1 1 2 1) 0
0 overlaps 2 (1 1 2 1) 1

2 meets 3 (1 1 0 1) 2
2 precedes 4 (1 1 1 1) 4
3 during 5 (2 1 2 1) 8

5 overlaps inverse 6 (2 1 2 2) 13
4 meets 7 (1 1 01) 17

7 finishes inverse 8 (1 1 2 0) 21
0 finishes 9 (2 1 2 0) 23
7 during 10 (2 1 2 1) 31
10 starts 11 (0 1 2 1) 39

31

As can be seen, the number of ambiguous relationships for this example is slightly larger

than n2/2 4. The full matrix including all transitive computation is shown in figure 8, and shown

below again as figure 12 for convenience. The next step is to assert an unambiguous relationship

over one of the ambiguous relations in the matrix. The first such assertion is the during

relationship (2 1 2 1) over the interval pair (2, 5). The existing relation computed for (2, 5) is (3

1 2 1) which corresponds to the relation set (d s o). Thus, the relation asserted is compatible with

the existing ambiguous relation.

Figure 12. Temporal system matrix consisting of 12 intervals

After the relation is asserted, the transitive closure algorithm is initiated. The number of

iterations performed by this function is 38 or, the number of ambiguous intervals remaining after

(2, 5) is removed. In this case, no additional ambiguities are resolved and there are 38 ambiguous

intervals remaining after the transitive closure calculation.

The next relation asserted is the finishes relation over the interval pair (4, 6). In this case,

when the transitive computation completes it has refined four additional relations yielding a total

of 33 remaining ambiguous relations. The algorithm performed 37 iterations for the initial

4Note that the actual total number of ambiguous relations is 78. Since the matrix is inversely
reflective about the diagonal, it is sufficient to maintain the set of ambiguous intervals in the upper
diagonal.

 00 01 02 03 04 05 06 07 08 09 10 11
 00 (----)(1121)(1121)(1111)(1111)(3131)(3333)(1111)(1111)(2120)(3131)(3131)
 01 (2122)(----)(3123)(1133)(1133)(3133)(3333)(1133)(1133)(2122)(3133)(3133)
 02 (2122)(3123)(----)(1101)(1111)(3121)(3323)(1111)(1111)(2122)(3131)(3131)
 03 (2222)(2323)(2022)(----)(1133)(2121)(2323)(1133)(1133)(2222)(3133)(3133)
 04 (2222)(2323)(2222)(2323)(----)(2323)(2323)(1101)(1111)(2222)(3121)(3121)
 05 (3322)(3323)(3122)(1122)(1133)(----)(2122)(1133)(1133)(3322)(3133)(3133)
 06 (3333)(3333)(3133)(1133)(1133)(1121)(----)(1133)(1133)(3333)(3133)(3133)
 07 (2222)(2323)(2222)(2323)(2022)(2323)(2323)(----)(1120)(2222)(2121)(2121)
 08 (2222)(2323)(2222)(2323)(2222)(2323)(2323)(2120)(----)(2222)(2121)(2121)
 09 (1120)(1121)(1121)(1111)(1111)(3131)(3333)(1111)(1111)(----)(3131)(3131)
 10 (3322)(3323)(3322)(3323)(3122)(3323)(3323)(1122)(1122)(3322)(----)(0121)
 11 (3322)(3323)(3322)(3323)(3122)(3323)(3323)(1122)(1122)(3322)(0122)(----)

32

asserted and then performed 33 iterations for each of the additional four relations. Thus, the

original assertion resulted in the disambiguation of four additional relations but none of these

produced further refinements. The total number of cycles for this assertion was 4 * 33 + 37 or

159. The resultant matrix is shown here as figure 13.

Figure 13. Resultant Temporal system matrix for Test #1.

In the first example, the 38 iterations took 36.75 seconds to complete. In the second

example, which refined an additional four relations, the closure computation took 163.46 seconds

to perform 159 iterations. The rough performance, in terms of time is one second per interval

check. This appears to be true throughout the remainder of the twelve-interval example. Thus,

while the number of ambiguous relationships may be a square of the number of intervals, the

number of iterations and transitive closure execution time is linearly dependent on the number of

ambiguous relationships. The balance of the twelve-interval system is provided in [Kovarik,

1994].

4.2.2 Test #2 - Distribution of Ambiguous relations

Since the performance of the algorithm is dependent on the number of ambiguous

relationships in the system, a test was developed which selected a random number of intervals

between two and twenty as the set of intervals in the system, and then generated random relation

assignments between successive pairs in the system. As each pair had an interval relation

randomly selected, the system computed the rest of the entries for the interval using the compute-

00 01 02 03 04 05 06 07 08 09 10 11
 00 (----)(1121)(1121)(1111)(1111)(3121)(3121)(1111)(1111)(2120)(3131)(3131)
 01 (2122)(----)(3123)(1133)(1133)(3123)(3123)(1133)(1133)(2122)(3133)(3133)
 02 (2122)(3123)(----)(1101)(1111)(2121)(2121)(1111)(1111)(2122)(3131)(3131)
 03 (2222)(2323)(2022)(----)(1133)(2121)(2123)(1133)(1133)(2222)(3133)(3133)
 04 (2222)(2323)(2222)(2323)(----)(2121)(2120)(1101)(1111)(2222)(3121)(3121)
 05 (3122)(3123)(1122)(1122)(1122)(----)(2122)(1123)(1133)(3122)(3123)(3123)
 06 (3122)(3123)(1122)(1123)(1120)(1121)(----)(1101)(1111)(3122)(3121)(3121)
 07 (2222)(2323)(2222)(2323)(2022)(2123)(2022)(----)(1120)(2222)(2121)(2121)
 08 (2222)(2323)(2222)(2323)(2222)(2323)(2222)(2120)(----)(2222)(2121)(2121)
 09 (1120)(1121)(1121)(1111)(1111)(3121)(3121)(1111)(1111)(----)(3131)(3131)
 10 (3322)(3323)(3322)(3323)(3122)(3123)(3122)(1122)(1122)(3322)(----)(0121)
 11 (3322)(3323)(3322)(3323)(3122)(3123)(3122)(1122)(1122)(3322)(0122)(----)

33

column function. A test generator was used to develop a set of temporal systems consisting of a

random number of intervals between 2 and 25. One temporal relation for each column in the

temporal system matrix was selected at random and the resultant closure was calculated.

The number of resulting ambiguous intervals was then identified, and associated with the

number of intervals in that particular execution. This test was run 500 times to obtain an

indication of the relationship between the number of intervals in the temporal system and the

resultant ambiguous intervals.

Thus, a completely populated temporal system matrix of relationships was calculated for

the intervals in the system. These data were then plotted on a graph to provide a visual

presentation of the distribution of the ambiguous intervals. A raw data plot of the number of

intervals in the system versus the number of ambiguous relationships is shown in Figure 14.

Ambiguous Relations vs Number of Intervals

Number of Intervals

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

34

Figure 14: Number of Intervals versus Ambiguous Relations

As the plot shows, the number of ambiguous intervals within the system appears to be

polynomially dependent upon the total number of intervals in the system. The range of the

dependency is less than n2, where n is the number of intervals in the system. This is because n2 is

the worst case where there are no unambiguous relationships within the system.

These intervals and ambiguous relationships were also plotted on a logarithmic scale. This

is shown in Figure 15. Based on the shape of the plot, it can be seen that the number of

ambiguous relationships is roughly in the order of n2, but the placement of the curve indicates that

it is less than a full n2 by some relative multiplier.

Logarithmic P lot of Ambiguous Relations vs Number of

Intervals

Number of Intervals

1

10

100

1000

1 10 100

Figure 15: Logarithmic Plot of Number of Intervals versus Number of Ambiguous
Relations

As the above plots show, the number of ambiguous relationship within the system is

related to the number of total intervals in the system. Furthermore, as a general limit, the number

35

of ambiguous relationships would appear to be n2. However, as the plot in Figure 15 indicates,

the common limit appears to be somewhat less than half the square of the number of intervals,.

n2/2. Furthermore, as relationships are refined, the number of ambiguous relationships decrease.

Thus, the O(n2) of the general limit only applies for initial matrices. Subsequent computations and

refinements of the relationships within the matrix reduce the number of ambiguous relationships,

thereby reducing the complexity of the transitive closure computation.

4.2.3 Test #3- Scalability and Large Interval sets

This set of tests addressed the issue of scalability. Would the number of ambiguous

relationships be different for large temporal systems, or would the number be consistent with the

data gathered for the smaller examples?. A secondary issue was also investigated through this set

of tests. Specifically, when a set of unambiguous relations is asserted over an ambiguous relation

in the matrix, triggering the transitive closure computation, what was the number of other

ambiguous relations clarified during the computation?

To accomplish this, a set of five interval sets was generated consisting of 20, 40, 60, 80,

and 100 intervals. These sets resulted in a relation matrix of 400, 1,600, 3,600, 6,400, and 10,000

relations, respectively. A single relation was randomly selected for intervals (0, 1) and asserted.

This was repeated for each interval pair (Ii,Ii+1) to n-1, where n is the number of intervals in the

test set. As each relation was asserted for the interval pair, the resultant column computation was

performed to complete the entries in the matrix.

After logging the initial set of ambiguous relations in these large runs, a test driver was

initiated automatically which iterated n times, where n = the number of intervals in the system5,

5 While the iteration process could be continued until the temporal system is fully disambiguated,
the intent of this process was to gather some empirical data on the relative disambiguation of a
temporal system with respect to the number of iterations. Hence, the number of interval was
arbitrarily chosen.

36

taking the next interval pair off the ambiguous relations set, and asserted into the matrix the first

primitive relation which was compatible with the ambiguous relation. This was done to

progressively disambiguate the system.

This initiated the transitive closure computation once again, which was instrumented to

print the number of ambiguous relations at the start of each transitive closure computation and the

number remaining at the end of each closure computation. In addition, the actual closure

computation was instrumented to provide a comparative CPU time to execute the closure

algorithm. While this execution time will vary depending on the execution platform, the intent

was to provide some indication of any correlation between the performance of the closure

algorithm and the number of ambiguous intervals.

The resultant matrices for the above test sets showing the initial number of ambiguous

relations and the number of ambiguous relations remaining after refining n relations (where n is

the number of intervals) and the number of ambiguous relation removed is presented below.

Table 7. Summary for large test case set.

The first item of note is the number of ambiguous relations in each of the test sets. These

relations within these sets were generated randomly and in all cases the number of ambiguous

relations averaged less than n2/2. An interesting observation is the general pattern of 5n

ambiguous relations that were removed during the test where n is the number of ambiguous

relations that were removed by the test suite.

Number
of

Intervals

Number of
Relations

Ambiguous
Relations

Ambiguou
s Relations
Remaining

Ambiguou
s Relations
Removed

20 400 107 2 105
40 1,600 651 305 346
60 3,600 1,629 1,291 338
80 6,400 2,953 2,566 387
100 10,000 4,521 3,926 595

37

In all cases, the number of iterations performed for each ambiguous relation removed was

directly dependent on the number of remaining ambiguous relations. Thus, for a system with xRa

ambiguous relations, at most x-1 iterations are performed for the removal of an ambiguous

relation. It was noted that in some cases, several ambiguous relations were removed as part of

the transitive closure algorithm. So, for some portion of the test data, less that x-1 iterations were

performed.

4.2.4 Test #4 – Timing Tests

Test #4 uses timing data from the other tests to provide an empirical indication of run time

and cycles. Two essential types of timing data were gathered for the algorithm validation. These

were Cycle Iterations and Clock Time. The purpose of the first data was to validate the

performance and complexity analysis of the algorithm presented in 4.1 above.

Cycle iterations were calculated by counting the number of cycles performed over the set

of ambiguous relations for each new relation asserted into the system. This was found to be equal

to the number of ambiguous relations. The full test data can be obtained from [Kovarik, 1994]

Clock time was also collected for the 12 interval system of Test #1, but the large scale

tests of Test #3 provide more sizable examples. These tests were the systems of 20, 40, 60, 80,

and 100 intervals mentioned earlier. In each case, the number of ambiguous intervals present at

the start of the transitive closure, the time required to perform the closure computation, and the

number of ambiguous intervals present at the end of the closure computation was captured.

Results showed that the overall performance of the algorithm was somewhat better than

expected. The limits of the algorithm, in terms of its complexity and related performance were in

the range expected. For all test cases, the range of ambiguous relationships were less than n2

where n = the number of intervals in the system and, consequently, the dimension of the matrix.

For large test cases where the relations were selected at random, the number of ambiguous

intervals was nearly n2. However, in tests where the relations asserted where defined through an

38

example, such as temporal relations in a story, the number of ambiguous intervals ran somewhat

less than n2. The output from these test cases can be found in [Kovarik 1994].

4.3 Analysis Summary

Based on the data gathered from the test suites developed, the bit-encoded temporal

relation representation performed at the predicted efficiency. The algorithm exhibits no signs of

exponential growth in time as the number of intervals in the temporal system grows. The main

limitation is the space demands for maintaining a full binary matrix. The overall performance was

consistently less than the worst case analysis of O(n3) and was closer to O(n2) on average.

Limiting the closure algorithm’s traversal of intervals to the rows and columns of the

interval indexes representing the changed relation significantly improves performance. If no other

ambiguous intervals are found in the interval row and column, the closure algorithm halts in linear

time. Similarly, if ambiguous intervals are found but they are not refined as part of the closure

computation then the closure algorithm halts in linear time.

In the next section, the conclusions are summarized for this research and the results are

compared with the original goals.

5. Conclusions

This paper presents an efficient method of computing transitive closures over a set of

temporal interval relationships. A sub-algebra of the interval-based temporal algebra of Allen was

defined. The mechanism to accomplish this goal was the definition and validation of a bit-mapped

algebra for representing temporal interval relations as a set of end point relationships between two

intervals. This bit-encoded signature was then used as a basis for computationally deriving the

transitive relation from two interval relations.

39

This algebraic algorithm for transitive relation calculation then formed the basis for a

transitive closure algorithm which computed the closure of a temporal system matrix in O(n3) at

the worst case. A key feature of the algebra is the elimination of any dependency on a transitive

lookup table. All the relation values for the transitive relation are computed directly from the

representation.

Mixing the time points of the interval structures with the temporal relationships in the

relationship matrix provided a synergy between the two approaches by supporting the validation

of interval relationships via time point values on the intervals and visa versa. This proved to be of

significant value for engineering applications of the system.

This hybrid approach allows a temporal plan to be completely specified in terms of the

interval relationships between the actions in the plan represented as intervals. As the plan is

executed, the initiation of actions within the plan can be tagged with discrete time points as they

occur. These time points can then be used to validate the plan by comparing the point

relationships between the actual values to see if the actual point relationships yield the same

signature between two intervals as the interval relation asserted in the plan matrix.

As with any engineering implementation of a mathematical or physical system, there are

inherent limitations imposed on the realization of the system. In this case, the limitations are

primarily the reduced algebra representation. It should be noted, however, that the reduced

algebra represented by this implementation captures all interval set combinations within the

transitivity table defined by Allen. Thus, the limitations of the bit-algebra are those cases where a

hypothetical situation is represented by the full algebra. For example, representing the statement,

“The light was turned on before or after Vince left the house.” is a plausible natural language

statement. However, what is being asserted by this statement is a logical or of two hypothetical

scenarios.

From an implementation standpoint, there exists some limitation in the subsets of intervals

that can be represented using a two-bit value for the endpoint relationship encoding. There are

40

subsets, such as (p m), of other sets in the algebra, such as (p m o), which are valid. Currently,

because the bit-encoding representation utilizes two bits, it cannot capture these subsets uniquely.

The bit algebra was developed based on the premise that the only relations that can be

asserted between the endpoints of intervals are less than, greater than, equal, and unknown. This

results in a set of ambiguous relationships that provide a representation where the unknown

endpoint relationship could be one of less than, equal, or greater than.

In fact, there are opportunities for a finer granularity of representation. For example,

when computing the transitive relation for (A overlaps B) and (B overlaps C), the resultant

ambiguous relationship represents the fact that, without additional information, it is impossible to

ascertain whether the relationship between A and C is precedes, meets, or overlaps. This is

accurate when computing the transitive relation from two overlaps relationships. However, it is

also valid to state that (A overlaps or meets C).

Using a two-bit code for endpoint relations cannot capture this finer grained ambiguity.

The potential exists, at the expense of a bit more space to represent the interval relations, to

expand the bit code representation of the end point relations such that it is possible to capture the

finer grained ambiguities of the algebra. For example, using a four bit code for end point

relationships would allow the use of individual bits for each of the end point relationship types.

6. References

All83a Allen, J.F., Maintaining Knowledge about Temporal Intervals, Communications of the
ACM 26 (11), November 1983, 832-843.

All83b Allen, J.F. and Koomen, J.A., Planning Using a Temporal World Model, Proceedings of
the 8th International Joint Conference on Artificial Intelligence (Karlsruhe, W.
Germany), Morgann Kaufmann 1983, 741-747.

All84 Allen, J.F., Towards a General Theory of Action and Time, Artificial Intelligence 23 (2),
July 1984, 123-154.

41

All85a Allen, J.F. and Kautz, H., A Model of Naive Temporal Reasoning, in Hobbs, J.R. and
Moore, R.C., editors, Formal Theories of the Commenses World, Ablex 1985.

All85b Allen, J.F. and Hayes, P.J., A Commensense Theory of Time, Proceedings of the 9th
International Joint Conference on Artificial Intelligence (Los Angeles, California),
Morgan Kaufmann 1985, 528-531.

All87 Allen, J.F. and Hayes, P. J., Short Time Periods, Proceedings of the 10th International
Conference on Artificial Intelligence (Milano, Italy), Morgan Kaufmann 1987, 981-983.

All89a Allen, J.F., It's Time for Planning, Proceedings ot the Seventh Conference of the Society
for the Study of Artificial Intelligence and Simulation of Behavior, London, UK, 1989,
227 (Abstract only).

All89b Allen, J.F. and Hayes, P.J., Moments and Points in an Interval-Based Temporal Logic,
Computational Intelligence, Vol. 5, No. 4, November 1989, 225-238.

All91 Allen, J.F., Time and Time Again, The Many Ways to Represent Time, International
Journal of Intelligent Systems, (6) 4, July 1991, 341-355.

Dec92 Dechter, R., Meiri, I., and Pearl, J., Temporal Constraint Networks, Artificial
Intelligence 49, 1991, 61-95.

Dor92 Dorn, J., Temporal Reasoning in Sequence Graphs, Proceedings of AAAI-92, San Jose,
CA, 1992, pp. 735-740.

Gal91 Galton, A., Reified Temporal Theories and How To Unreify Them, Proceedings of the
Twelfth International Conference on Artificial Intelligence, 1991, Volume 2, 1177-1182.

Gol92 Golumbie, M. C., and Shamir, R., Algorithms and Complexity for Reasoning About Time,
Proceedings of AAAI-92, San Jose, CA, 1992, pp. 741-747.

Hal86 Halpern, J.Y. and Shoham, Y., A Propositional Modal Logic of Time Intervals,
Proceedings of the Symposium on Logic in Computer Science, 279-292, IEEE Computer
Society Press, 1986.

Kov94 Kovarik, V. J. Jr., A Computationally Efficient Method for Representing and Computing
Transitive Closure Over Temporal Intervals, Ph.D. Dissertation, University of Central
Florida, 1994.

Lad86a Ladkin, P.B., Time Representation: A Taxonomy of Interval Relations, Proceedings of
AAAI-86, 360-366, Morgan Kaufman, 1986.

42

Lad86b Ladkin, P.B., Primitives and Units for Time Specification, Proceedings of AAAI-
86, 354-359, Morgan Kaufman, 1986.

Lad87a Ladkin, P.B., Constraint Satisfaction in Time Interval Structres I: Convex
Intervals, Kestrel Institute Technical Report KES.U.87.11, 1987.

Lad87b Ladkin, P.B., The Logic of Time Representation, Ph.D. Thesis in Logic and
Methodology Science, University of California, Berkeley, 1987.

Lig90 Ligozat, Gerard, Weak Representations of Interval Algebras, Proceedings of AAAI-90,
Boston, MA, 1990, pp. 715-720.

She92 Sheppard, J. W. and Simpson, W. R., Fault Diagnosis Under Temporal Constraints, IEEE
Autotestcon Conference Record, 1992, 151-159.

Van89 Van Beek, P., Approximation Algorithms for Temporal Reasoning, Proceedings of the
11th IJCAI, 1291-1296.

Van90 Van Beek, P., Reasoning About Qualitative Temporal Information, Proceedings AAAI-90,
Boston, MA, 1990, 728-734.

Vil82 Vilain, M., A System for Reasoning About Time, Proceedings of AAAI-82, Pittsburgh,
PA, August 1982.

Vil86 Vilain, M. and Kautz, H., Constraint Propagation Algorithms for Temporal Resoning,
Proceedings of AAAI-86, Morgan Kaufmann 1986, 377-382.

43

Vince:

I have gone over the paper with a fine tooth comb. I had a little trouble understanding it. So, I
guess the comments made by the reviewers were for the most part valid. I started looking at the
comments, but then I decided that I first needed to understand what was in the paper before I
could try to respond to the comments. I was hoping not to have to ask you as many questions as
I have, but I think you are in a better position to answer them than I am.

My primary goal was to structure the paper. Although I’m not certain I have done that correctly,
specially concerned about section 4, the testing. I am not really certain how many types of

tests you actually ran, but my count came to 4. Please verify that the text that I cut and pasted
goes with the correct test. I have made several other smaller changes, and not all of them are
obvious. I suggest that you answer my questions first, and send the paper back to me. I can then
work on it a bit more, and probably generate some new questions, but hopefully fewer and less
momentous.

I like the paper very much, but it needs help in clarity. Can you get this back to me within a
month or two? I would like to get it off to the journal by mid-summer if at all possible.

Let me know.

Avelino

