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Validating the performance of a knowledge-based system is a critical step in its commercialization
process. Without exception, buyers of systems intended for serious purposes require a certain level of
guarantees about system performance. This is particularly true for diagnostic systems. Yet, many
problems exist in the validation process, especially as it applies to large knowledge-based systems.
One of the biggest challenges facing the developer when validating the system’s performance is
knowing how much testing is sufficient to show that the system is valid. Exhaustive testing of the
system is almost always impractical due to the many possible test cases that can be generated, many of
which are not useful. It would thus be highly desirable to have a means of defining a representative set
of test cases that, if executed correctly by the system, would provide a high confidence in the system’s
validity. This paper describes the experiences of the development team in validating the performance
of a large commercial diagnostic knowledge-based system. The description covers the procedure
employed to carry out this task, as well as the heuristic technique used for generating the representative

set of test cases.
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1. INTRODUCTION

In the last decade or so, a large number of successful
prototypes of knowledge-based systems have been
developed for a wide variety of applications,' in do-
mains ranging from medicine and aerospace to finance
and travel. Although knowledge-based systems have
generally proved to be a promising and vibrant tech-
nology, there are relatively few systems that are oper-
ational. Partly to blame for this situation is the diffi-
culty still being faced by system developers in providing
high confidence in the correct performance of the
system being developed. An inaccurate and unreliable
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knowledge-based system can destroy its credibility, and
clearly defeats the purpose of creating an “intelligent
system”.? Although in the last decade or so, research in
issues related to testing, validation and verification of
knowledge-based systems has progressed greatly,’'
many critical issues that contribute to the development
of robust and reliable systems still remain to be
addressed. Furthermore, it is interesting to note that
while several “how to” papers have been written on
validating and verifying (V&V) knowledge-based
systems, there are only a handful of papers that
describe actual experiences related to the testing and
performance validation of real-world, operational
systems.’>™* One significant bottleneck frequently
encountered in the transition from a prototype to an
operational system is the lack of a rigorous and unified
framework for testing knowledge-based systems."™"’
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With the intention of addressing the above deficien-
cies, this paper:

(1) describes the overall testing process followed
in the validation of a large, real-time diagnos-
tic knowledge-based system which is presently
in successful commercial operation;

describes a technique that generates a rep-
resentative set of test cases, a non-exhaustive
set of cases intended to provide a high prob-
ability of system validity at a reasonable cost in
effort when all are correctly executed by the
system; and

discusses some lessons learned during the tran-
sition of the subject knowledge-based system
to commercial operation.

)

€)

2. VALIDATION AND VERIFICATION OF
KNOWLEDGE-BASED SYSTEMS

Validation and verification (V&V) of conventional
software is a well-researched area.'®? Issues such as
software quality assurance, assertion checkers, proof of
correctness, debugging aids, symbolic execution, test
data generation, formal verification techniques, reliabi-
lity analysis, and testing have been extensively
addressed in the literature.'® "2

Although the lessons from testing conventional soft-
ware are both rich and valuable, they cannot be directly
transferred to knowledge-based systems, due to the
significant differences between conventional software
and KBS. Unlike conventional software, knowledge-
based systems solve problems that cannot be easily
solved through algorithmic techniques. Moreover,
unlike conventional software in which data and pro-
cedures are intermingled, knowledge and control are
two distinct entities in knowledge-based systems. The
reasoning mechanism in a KBS attempts to mimic the
knowledge and expertise of the human expert, while
conventional programming captures the nature of
highly structured and routine decision-making.
Furthermore, the ever-present and often complex
interface with a domain expert can make evaluation of
the system difficult. Additionally, as indicated by Shaw
and Woodward, “care must be taken to ensure that it is
the system that is being validated, rather than the
expert from whom the knowledge was elicited”.?

Chandrasekaran® lists four main purposes for testing
and evaluating a knowledge-based system. Two of
these are: (1) to demonstrate the performance of the
system to members outside the development group,
such as users, prospective clients, etc.; and (2) to
identify any inherent weakness in the system. The
procedure described here focuses on these two issues.

The terms validation and verification have been
defined in Adrion et al.’s classic paper.*! The definitions
of these terms are briefly summarized below.

Validation: Validation determines the correctness of
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the final software product with respect to the user’s
needs and requirements.” It is the final quality-control
step of knowledge-based system development, and
ensures that the output of the system is correct (how-
ever that is defined), and that the developed system is
what the users want and need. Validation can be
considered to be largely an extrinsic measurement (as
defined by Hayes—Roth)? of the performance of the
system.

Verification: is the demonstration of the
consistency, completeness and correctness of the soft-
ware”. It is ensuring that the system is built right.”
Verification is more of an intrinsic measurement (also
as defined by Hayes—Roth).* .

Although the field of validation and verification of
knowledge-based systems has progressed since the
early 1980s, when V&V of knowledge-based systems
was not being given its due consideration, a survey of
the history and growth of knowledge-based systems
shows that in the ecarly eighties scientists and
researchers in the Al community were focusing their
efforts on issues such as knowledge-based system
design, knowledge acquisition, knowledge represen-
tation, and development methodologies. It was only in
the mid- to late-1980s, as more prototypes were being
introduced into their operational environments, that
the issues of the validation, verification, and testing of
knowledge-based systems gained the attention of Al
researchers.

“

3. DESCRIPTION OF GenAID

Although a large number of knowledge-based system
prototypes has been developed in the last decade or so,
very few systems have become operational. For a
variety of reasons such as high implementation cost,
lack of management interest, lack of confidence in the
performance of the system, or inability to provide
performance guarantees, a number of prototypes failed
to progress into fully-fledged operational systems. One
of the earliest knowledge-based systems developed as a
commercial product for external users was GenAID."*
An acronym for Generator Artificial Intelligence
Diagnostics, GenAID was developed in the 1980s by
Westinghouse Electric Corp., a manufacturer of large
electric power-generating equipment, in order to help
its customers decrease the downtime of their turbine
generators through the early detection of potentially
serious abnormal operating conditions.

Historical evidence indicates that many serious and
costly turbine generator failures initially start out as
relatively minor problems that go undetected for a
comparatively long period of time, partially because of
the inability of operators to recognize symptomatic
problems in the early stages. This often led to a deterio-
ration of the situation, and eventually resulted in a
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serious problem. It has been recognized that for many
failures, corrective action at an early stage would have
resulted in significant reduction of damage, lowering
the consequent downtime from several months to a few
days.

Large power-generation equipment is typically well
instrumented, with sensors that are continuously moni-
tored by a data-acquisition system. Periodic inspection
of the data by an expert would facilitate the detection
of incipient failures, which in turn would lead to timely
corrective action. In most cases, however, the lack of
diagnostic expertise prohibited the timely detection of
pending disasters. GenAlID has helped to overcome
this serious bottleneck by providing much-needed diag-
nostic expertise to the plant operators.

GenAID is a forward-chaining, rule-based system,
comprising approximately 6000 rules. Originally imple-
mented in LISP on a VAX system, it was later re-
implemented in C for speed and portability. The over-
all system is composed of seven different modules, each
representing specific parts of the generator system.
These are: (1) the water-cooled stator windings; (2) the
gas-cooled stator windings; (3) the hydrogen auxiliary
system; (4) the seal oil system; (5) the excitation
system; (6) the stator coil cooling water system; and (7)
the bearing lubrication system. Depending on the type
and design of the generator being monitored, however,
not all seven modules need be implemented for any one
generator. Some of these modules are mutually exclu-
sive, while others are necessary only for some types of
generators. The sizes of the modules range from a
minimum of 200 rules to more than 1000 rules. Due to
inherent limitations in the sensors that monitor the
generators, there is some uncertainty regarding the
accuracy of the input values, which in turn affects the
reliability of GenAID’s diagnosis. Hence, GenAID’s
diagnoses are ranked according to a numeric value
which represents the likelihood of the problem being
present (e.g. certainty factors). Nearly a dozen experts
were involved in the knowledge-acquisition process,
due to the various sub-systems within the generator,
each expert representing expertise in different sub-
systems.

In over eight years of field operation on several units,
GenAlID has been successful in diagnosing a number of
problems which might otherwise have gone undetected
and resulted in serious incidents.® As a result,
Westinghouse has proceeded to extend this concept to
other pieces of equipment that it manufactures, such as
the steam turbine (TurbinAID).

GenAlD’s clients consist of electric utilities and
other purchasers of power-generation equipment who
are heavily staffed by experienced technical personnel.
Therefore, they do not merely look for general assur-
ances about system performance, but rather, for
formal, rigorous validation procedures. This was the
impetus for the methodology introduced for the valida-
tion of GenAID, which is described below.
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4. METHODOLOGY EMPLOYED FOR THE
VALIDATION OF GenAID

Conventional software testing has traditionally
involved the execution of a set of benchmarks (e.g. test
cases) whose results are precisely known: the calcula-
tions of a mathematical program can often be verified
through hand calculations, or the behavior of physical
phenomena can be observed in an actual system and
compared to that of the computer model of the same
phenomenon. If the simulation produces the correct
results for a given set of inputs, then it has correctly
solved the test case. If this continues for the entire set
of test cases, then the software system can be con-
sidered valid. The benchmark approach has worked,
and continues to work, satisfactorily for traditional
software.

A modified version of the benchmark approach was
employed in the validation testing of GenAID. The
modification consists in the fact that diagnostic test
cases which use certainty factors cannot be precisely
determined to be right or wrong. Various experts may
have varying opinions, which may be contradictory, as
shown during the validation testing of MYCIN® and
various other systems. Thus, a more flexible means of
determining the correctness of GenAID’s solution to a
particular test case was required.

The validation strategy for GenAID consists of the
following steps:

(1) Generate a representative set of test cases to
provide adequate coverage for each of the
modules. Execute the test cases on the system,
and analyze the results with the help of a
domain expert and the knowledge engineer.
Carry out design reviews of the GenAID
system. This is to be done by presenting the set
of test cases, as well as GenAID’s answers to
them, to a panel of experts. This is to be
followed for each of the modules indepen-
dently. The design review panel will determine
whether GenAID’s answer to each test case is
correct or incorrect. All incorrectly solved test
cases will require that a modification be made
to GenAID so that it is correctly solved.

(3) Field test the system in its operational environ-

ment to detect any other problems.

2

A detailed discussion of the above steps follows
below.

4.1. Generation and execution of test cases

The generation of test cases is a critical process in
system testing. The number and quality of the test cases
has a direct and significant impact on the reliability and
robustness of the system. Exhaustive testing, although
generally desirable, is impractical, since a very large
number of test cases must be executed and evaluated,
even in small systems. Hence, the goal of the GenAID
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Fig. 1. Self-contained, reasonably-sized knowledge sub-module.

developers was to generate a large enough set of test
cases, that would not only be highly resource-efficient
but also ensure the success of the system.

The following set of test objectives was established,
based on intuition and on engineering judgment:

(1) The test cases should ensure GenAID’s ability
to identify accurately, at all times malfunctions
that are considered critical. Critical malfunc-
tions are those that could result in either
bodily injury to plant personnel or serious
damage to the generator. In other words, with-
out any exception, GenAID should accurately
identify critical malfunctions and suggest
expert remedies. Hence, a 100% accuracy
record was required in critical malfunctions,
failing which the usefulness of the product
would be negated and its credibility com-
promised.

(2) The test cases should correctly identify “most
of the time” (i.e. 80-90% of the time depend-
ing on the nature of the system) malfunctions
that occur frequently, but are not considered
critical. Malfunctions such as sensor failures
and routine maintenance items would fall in
this category. These malfunctions are such
that, at their worst level of severity, they
would not represent a significant unit outage,
or potential injury to personnel.

(3) The test cases should correctly identify, most
of the time (i.e. more than 50% of the time) all

other malfunctions that are neither common
nor critical in nature.

Different priorities were assigned to the above three
objectives, with the first one having a high priority, the
second one medium priority, and the last, low priority.

4.2. Division of GenAID into sub-modules

In order to implement the objectives listed in Section
4.1 above in a manageable fashion, the tactic of divide-
and-conquer was employed. Each module in GenAID
was divided into sub-modules, and test cases were
generated for each of these.

Two kinds of sub-modules are defined here: self-
contained/reasonably-sized sub-modules, and overlap-
ping sub-modules. These are described below.

Self-contained/reasonably-sized sub-modules: Groups
of related knowledge elements (i.e. rules, intermediate
hypotheses, malfunctions, sensors) which could be
grouped together without any overlap with other such
groups were called self-contained sub-modules. They
were kept to a reasonable size (not more than two or
three malfunctions) for manageability, thus the adjec-
tive reasonably-sized. Figure 1 depicts a reasonably-
sized/self-contained sub-module of a knowledge-base
module. Segregation of the knowledge in this fashion
helped generate the set of test cases for each sub-
module in an easily managed fashion.

Overlapping  sub-modules:  Self-contained sub-
modules that grew too large were divided into smaller



AVELINO J. GONZALEZ et al.: DIAGNOSTIC EXPERT SYSTEM

sub-modules that shared some knowledge eclement.
These were called overlapping sub-modules. Figure 2
shows one example where it is not possible to create
reasonably-sized self-contained sub-modules.

Overlapping sub-modules were treated slightly dif-
ferently, since some test cases in other overlapping sub-
modules would require values of a sensor which were
already repeated in the tests for the neighboring sub-
module. This repetition was not expected, however, for
sensors in self-contained sub-modules since they did
not relate to anything outside their own sub-module.
This made the generation of test cases for self-
contained sub-modules somewhat easier. A formal rep-
resentation of the above concept is described as fol-
lows.

The entire knowledge base, KB, is defined as a set
composed of the various modules described above,
called M,. The KB for each generator instance includes
those modules that are applicable to that particular
generator, such that

KB:{Mh M27 M3’ R ] Mi}'

Similarly, each module M; is a set composed of
sub-modules (self-contained as well as overlapping),

SM, such that
Mi={SMi,l, SM:',29 SM, 5, . . ., SMi.j}-

In turn, each sub-module is a set of basic knowledge
elements defined as malfunctions (m), rules (r), inter-
mediate hypotheses (%), and input sensors (s), which
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are also grouped together as subsets. Thus, this can be
described as

SML]:{{ml)mZ: m37 LR ,mk}{rl, LOTRA TR FTII ’rl}

{hl’ th h37 IR} hn}{sls 82,83, 845 -+ - sp}}
SM, i ={misr, Musas - s My dfrins, riaas - -0 Tiv o}

{hn+l’ hn+2’ LRI ] hn+c sp+l,sp+29 <o asp+d}}
SMi.j+2={{mk+a+l7 Mysgas - - - €LCY . L. h

where i corresponds to the module of which all the
sub-modules are subsets, and j is the label of each
particular sub-module.

By definition, the intersection of the set of rules for
any one sub-module with that of another sub-module
should be the empty set. This is likewise true for
malfunctions, hypotheses and sensors, and applies to
self-contained as well as overlapping sub-modules.
Therefore, no malfunction, rule, hypothesis or sensor
appears in more than one module or sub-module. The
union of the malfunction, rule, hypothesis and sensor
subsets for all the sub-modules in a module makes up
the knowledge in an entire module.

The malfunctions are now further defined as a tuple,
where the first element is the malfunction’s own label,
and the second term is a set of the rules that act to set
its value. This can be described as

<mx{ry’ LRI rz})a

where x stands for the number assigned to a particular
malfunction, and y and z stand for the names of any
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Fig. 2. Overlapping sub-modules.
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rules that are capable of determining the value of m,. It
is important to note that the rules in this set, called the
set-by rules, do not have to be in the same sub-module,
or even the same module, as the malfunction. The
sensors can similarly be described as tuples whose first
term is the label of the sensor, and the second a set of
the rules that use that sensor in their premises (called
the used-by rules), which also do not have to belong to
the same sub-module as the sensor. Intermediate
hypotheses can be described as triples, where the
second term is the set of all used-by rules, while the
third term represents the set of set-by rules.

Assuming that the sub-module of Fig. 1 is labeled
SM, , (a subset of module M,), it could be thus repre-
sented as follows

SM, ,={{m,, my}h,, hy, i}s,, 5, 53}
{ri, ra, ra, ra, 15, 16, 1o},

where m, can be represented as (m, {r,, rs}), h, can be
represented as (i, {rs, rs} {r,}), and so on.

Using this representation, then, a self-contained sub-
module can be defined to be one in which the union of
all the set-by and used-by rules belonging to its mal-
functions, hypotheses and sensors is exactly equal to its
set of rules. A sub-module that does not meet this
criterion is considered an overlapping sub-module.
Note that in Fig. 2, rule r,; belongs to sub-module 2, yet
is found in the set of set-by rules for hypothesis #4,.
Likewise, rule ry; is part of sub-module 1, yet appears in
the set of set-by rules of conclusion (malfunction) m,.

4.3 Test case generation heuristics

Once the modules have been divided into smaller
units, the next step is to generate the representative test
cases for each of these sub-modules using heuristics.

Two specific heuristics were used. The first one,
called the classification heuristic, was used to classify
each malfunction being tested according to its priority
level as described in Section 4.1: high priority, medium
priority, and low priority. The classification heuristic is
used to dictate how thoroughly to test each of the
malfunctions within the sub-module of interest.

The second heuristic is actually a set of three heuris-
tics which guides the generation of test cases for each
sub-module according to the priority level of each
malfunction therein. These are as follows:

High-priority malfunctions were very thoroughly
(although not exhaustively) tested. This was intuitively
appropriate, since customers could not tolerate any
errors in diagnosing these malfunctions. This heuristic
divided the test cases into two groups of tests:

(1) Each path was individually tested four times
with the following input data for the applicable
Sensor:

— Once just above its upper limit (AUL).
— Once just below its lower limit (BLL).
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Table 1. Complete set of combinations of paths to be tested for
malfunction m, of Fig. 1 if it were a high priority malfunction

Test no. M S, S, Paths tested
1 AUL NR n/a sy/ri/hyIrgdm,
2 BLL NR n/a sy/rylhyIrdm,
3 NR NR n/a sylrylhyirdm,
4 AL NR n/a syIrylhylryim,
5 NR AUL nja $ylrylhylrsim,
6 NR BLL n/a s/ry hylrsim,
7 NR AL n/a s,/rylhylrsimy
8 AUL AUL na sy lhyirsimy—s ir/hyirydm,
9 AUL BLL na s,/ /hyirsim —srihrdm,
10 AUL AL na s,/ /hyirsim, —s,/rylhyridfmy
11 BLL BLL na  sy/nlholrsimy— sy /rlhydraim,
12 BLL AUL n/a  sy/nlhylrsimy—s\Ir\lh/ry/m,
13 BLL AL na s,/ /hyirsimy— s Irylhylrgd/m,
14 AL AUL nfa s /r/hyfrsimy— s, /r lhyIrdm,
15 AL BLL na  sy/r/hylrsimy—s/r/h/rydm,
16 AL AL n/a  s,/nlhy/rsimy—s/r/hirdm,

— Once in the normal portion of the range
(NR).

— Once in the alarm portion of the range
(AL).

Any other sensor which affects the malfunc-
tion being tested through a different path is set
to normal values, since that path is not being
tested.

For example, if a water temperature sensor
had a maximum realistic value of 100°C
(steam), a low realistic value of 0°C (ice), a
normal range of between 30° and 60°, and an
alarm point of 65°, then the four test points
would be: 110°, —5°, 40° and 65°C. This would
serve to validate the influence of each sensor
reading individually on each malfunction. It
should be noted that the first two test points
should not result in the identification of the
malfunction, since they will most likely indi-
cate faulty sensors.

(2) The powerset of all non-individual combi-
nations of paths to each high-priority malfunc-
tion were tested. Table 1 depicts a series of
tests that includes the complete set of such
combinations for one malfunction (of possibly
several) in a knowledge sub-module. Each
combination was tested with a combination of
sensor values, where each sensor took on each
of its four possible values, as described above.
This resulted in nine additional tests for the
example of Fig. 1, since some combinations
had already been tested with the individual
paths.

The number of tests would have been significantly
greater if there had been more than two paths affecting
the particular high-priority malfunction being tested.
For example, if there had been three paths affecting m,
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(say, paths p,, p,, and p;), the powerset of combi-
nations would include

{P1. P2s P3. PAUP2, P2/ D3, PAIP3s DA/ DA D3}

where each combination of two paths would be similar
in nature to tests 8-16 in Table 1.

For medium-priority malfunctions, the complete set
of combinations of paths for each malfunction used in
high-priority malfunctions was also used, but the sensor
inputs used were only two: one at normal conditions
and one at alarm. If the assumption is made that
malfunction m, in Fig. 1 is a medium-priority malfunc-
tion, the set of test cases is shown in Table 2.

The number of test cases would have also been
somewhat higher if the malfunction being tested had
more than two paths affecting it. However, since the
number of sensor values used in the tests is not as
comprehensive as for high-priority malfunctions, the
number of tests would not be nearly as large as for a
high-priority malfunction.

Finally, for low-priority malfunctions, only each indi-
vidual path was tested, with one sensor reading in the
normal range and one in the alarm range. See Table 3.

Since no combinations of paths are tested for the
low-priority malfunctions, the number of tests would be
insensitive to multiple (>2) paths affecting the mal-
function.

Repetitive groups of the knowledge base, that is,
identical knowledge used for symmetrical parts of a
generator, were basically ignored. This was justified
because the basic concept could be tested by only
testing one such group. For example, in a generator
containing 96 coils, each of which could be indepen-
dently monitored and diagnosed, there would be 96
identical groups of knowledge. Successful testing of one
of these could safely be extended to include validation

of all 96.
- This procedure provided a “formula”, based on intui-
tion and expressed through heuristics, that can be used
to determine an appropriate set of test cases to be
generated for the validation of each module. As a result
of applying these heuristics, the smaller modules
required somewhere in the neighborhood of 50-75
cases. This was due to the fact that there were very few
critical cases in these. The larger modules contained
more critical cases, but also contained a certain number
of repetitive knowledge groups which were not expli-
citly tested beyond the first group. The number of test

Table 2. Complete set of combinations of paths to be tested for
malfunction m, of Fig. 1 if it were a medium-priority malfunction

Test no. M S, S; Paths tested
1 NR NR n/a sy/rilhyirdmy
2 NR NR n/a syirylhyfrsimy
3 AL NR n/a sirdhyirdmy
4 NR AL n/a sairalhylrsimy
5 AL AL n/a Sa/rylyfrsimy — s /ry/hyfry/m,

Table 3. Complete set of combinations of paths to be tested for
malfunction m, of Fig. 1 if it were a low-priority malfunction

Test no. M S, S, Paths tested
1 AL NR n/a si/rylhyIrafm,
2 NR NR n/a silrthylrsim,
3 NR NR n/a $y/rylhylrsim,
4 NR AL n/a sy/rylhyfrsimy

cases for these larger modules was in the neighborhood
of 100.

The heuristics used are flexible, and can easily be
modified to make the test more or less stringent,
depending on the resources available. Nevertheless,
the procedure as described above proved to be satisfac-
tory for the GenAID validation.

It should be mentioned, however, that this methodo-
logy only detected errors of commission; that is, those
errors induced through the execution of the knowledge
in the knowledge base. Errors of omission, those errors
which result from the absence of knowledge in the
knowledge base, cannot be discovered using the pro-
cedure outlined above. Errors of omission are mani-
fested when a combination of inputs fails to identify a
malfunction that should have been detected.
Discovering errors of omission required the involve-
ment of experts to detect any gaps in the knowledge.
This is discussed in Section 4.4 below.

4.4. Test case design review

A set of test cases was generated using the above
heuristics, and was then executed on the system. The
performance of GenAID was then validated using a
formal design review of each module. Design reviews
are quality-assurance procedures, common in the engi-
neering of large or critical systems, in which a panel of
knowledgeable individuals carefully scrutinizes and
formally assesses a design before the product is com-
mercially produced.

The design review panel for each module consisted of
four experts in the technical domain pertinent to that
module: two were part of the original knowledge engi-
neering team, and two were outside experts who had
had no role in the development of GenAID (generally
brought in from field service divisions of
Westinghouse). In addition, design review panel
members included a representative from the Quality
Assurance Department, as well as the knowledge engi-
neer.

The test requirement that GenAID must accurately
execute all test cases is significant, as it eliminated the
need to conduct probabilistic analysis to determine the
accuracy of the system.

Quite frequently, system developers tend to evaluate
the validity of the system based on the percentage of
test cases found to be correct. However, this alone is
insufficient to ensure the reliability of the system. A
truly representative set of test cases lies at the heart of
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performance validation, and such a set should take into
account not only the number of test cases, but also their
nature. Anything less than this would, in the opinion of
the authors, constitute inadequate coverage of the
system.

At the end of each design review, members of the
review panel were asked to identify any malfunctions,
or combination of sensor readings leading to a malfunc-
tion that may have been overlooked by the test cases.
This was the means of identifying errors of omission.
Any new test case suggested by the experts was added
to the test case set for that module, and executed
immediately, and the results were reviewed by the
panel. An average of two to three test cases were added
in each design review as a result of this process.

Although initially there were some concerns that
such an “open forum” approach might lead to situa-
tions where there was irreconcilable disagreement
between experts, surprisingly, the experts seemed to be
in agreement on most of the significant issues. One
possible reason for this could be that the domain of
turbine generator diagnostics is quite mature, and the
experts working on the project all had significant exper-
ience.

4.5 Final validation of the system through field testing

Clearly, validation of each module independently
does not guarantee that the entire system has been
validated. Moreover, some aspects of the system, such
as the characteristics of the sensing instruments, and
their effects on system behavior, cannot be adequately
validated through test cases alone. Thus, the GenAID
developers felt strongly that field testing was essential
to ensure the proper performance of GenAID. The
independence of its component modules greatly facili-
tated incremental field testing of GenAID. This is, in
fact, one of the more significant advantages of parti-
tioning the knowledge base into system-related
modules. Upon completion of the design review of a
module, it was placed on-line in its operational environ-
ment, and its performance was continuously monitored
and communicated to the development team. Any
diagnosis generated, whether correct or otherwise, was
not communicated to the customer until carefully con-
firmed by the development team. Errors detected
during field testing were quickly traced, the knowledge
base revised, and the revision documented before the
revised module was incorporated into the main (opera-
tional) system.

After a “probationary” period of field testing, the
new module was considered operational, and its results
were made directly (and immediately) available to the
customers. This probationary period served mainly to
ensure that uncalibrated instruments, or their sporadic
and/or unduly erratic behavior, would not cause false
alarms. The length of the probationary period
depended on the number and types of operating con-
ditions “seen” by GenAID. For example, it was
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important that GenAID be subjected to a period of
high generator load, and of low generator load, an off-
line incident and to a start-up experience. The proba-
tionary period typically lasted 2—-3 months. The appro-
val of the performance of each module by the develop-
ment team was required before the module was
integrated with the main system, and the results of its
diagnosis were directly forwarded to the customer.

5. EVALUATION OF VALIDATION
METHODOLOGY USED

This section summarizes the results obtained, and
discusses some of the contrasting experiences of the
developemnt team when validating a sister knowledge-
based system, TurbinAID.

Although approximately 60% of the test cases for
each module were considered unacceptable by the
design review panel, the errors which caused the
deficient label for most of these were rather minor in
nature (i.e. the certainty factor assigned to the malfunc-
tion being tested by that test case was inappropriate).
These errors were quite easy to correct, and in some
cases, the knowledge base was revised overnight, in
time for the next morning’s panel meeting.

Approximately 10% of the test cases in a typical
module, however, were deemed unacceptable for more
significant reasons, such as incorrect diagnosis, or
incorrect sensor reading threshold. While some of these
were comparatively easy to correct, they generally
represented a more complex situation than those dis-
cussed above.

The knowledge base was modified so that all unsatis-
factory test cases executed correctly prior to probation-
ary field testing. Most modules passed their probation-
ary on-line operation with only a few (2-3) totally
incorrect diagnoses.

Although GenAID has produced some incorrect
diagnoses in its operational environment, these have
been very few in number (estimated to be less than 20
in over 70 unit/years of operation). More notably, none
of these errors have been critical. This was highly
consistent with the validation objectives declared at the
outset of the process. For the above reasons, it can be
safely said that the validation of GenAID was success-
ful.

A sister system to GenAID, called TurbinAID,
steam Turbine Artificial Intelligence Diagnostics,
trailed the GenAID development process by approxi-
mately 18 months, and presented an interesting con-
trast to GenAID. Unlike generators, turbines are much
more diverse in design and application. Each design has
unique features which make it susceptible to different
malfunctions. As a result, the experts tend to remem-
ber specific issues which may have been observed in
one design, but do not apply to other designs. Thus, the
same set of symptoms can easily elicit different diag-
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noses from different experts, depending upon their
personal experience.

Furthermore, the normal operation of turbines is
characterized by highly dynamic sensor readings.
Normal operating temperatures and pressures can vary
widely, depending upon load and steam cycle operating
characteristics. Even a perfectly operating turbine
takes approximately 30 min to reach steady-state con-
ditions. The operation of the turbine auxiliary system
can also have a significant impact on sensor readings.

Moreover, not only are the sensor readings in a
turbine much less predictable than for generators, but
to further complicate matters, the number and variety
of turbine sensors is quite large. Most power plants do
not have the level of instrument coverage necessary to
diagnose all possible conditions adequately, so expert
diagnosticians tend to make assumptions that are often
incorrect. Only during the past decade have computer-
ized data-acquisition systems been applied to accumu-
late and record sensor readings from all parts of the
plant. Thus, turbine diagnosticians have not tradition-
ally had good data to use in the diagnosis of malfunc-
tions. Therefore, the concept of diagnosing turbine
conditions at the nascent stages of a developing mal-
function from on-line sensor readings is beyond the
practical experience of many turbine experts.

What is interesting about the above is that, in spite of
the significant differences in the type of domain know-
ledge between the GenAID and the TurbinAID
systems, the validation procedure pioneered by the
GenAID system was successfully applied to various
modules of the TurbinAID system. The validated
modules have proceeded to go into commercial oper-
ation, and represent a competent representation of the
domain knowledge. This lends some credence to the
universal applicability of the validation procedure des-
cribed in this paper.

6. CONCLUSIONS AND SUMMARY

This paper has presented a description of experiences
in validating a commercially successful knowledge-
based system. These are embodied in the procedure
used to carry out this task. Nevertheless, the success
achieved in validating the GenAID system has intro-
duced a general technique for carrying out the same
process on other knowledge-based systems. This pro-
cess is based on the following elements:

— The use of heuristics to develop a set of test
cases that is representative of the established
validation criteria. The set of test cases is also
meaningful to ensure a representative (but not
exhaustive!) coverage of the knowledge base.

— The use of a design review format to analyze
the results of the test cases and ensure that all
test cases are correctly solved by the
knowledge-based system.

There is no theoretical basis for these heuristics.
Their development was based on intuition and on the
experience of the GenAID developers. The fact that
these were sufficient in the successful validation of
GenAID and TurbinAID only points to their suitability
in the validation process of these two systems.
However, the general concepts behind them can poten-
tially be extended to the validation of other knowledge-
based systems. Certainly, the details of the heuristics
(how many sensor readings are to be used, etc.) can be
modified to fit some other criteria or requirements
placed on the target knowledge-based system.

In general, the approach presented here describes a
systematic procedure to provide feedback for the
system developers. It was used successfully in the
validation of GenAID and TurbinAID, and it appears
that it can be effective for other types of knowledge-
based systems.
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