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Abstract
Validation of human behavioral models, such as those used
to represent hostile and/or friendly forces in training
simulations is an issue that is gaining importance, as the
military depends on such training methods more and more.
However, this introduces new difficulties because of the
dynamic nature of these models and the need to use experts
to judge their validity.  As a result, this paper discusses
some conceptual approaches to carry out this task.  These
are based on comparing the behavior of the model to that
of an expert, while the latter behaves normally in a
simulated environment, under the same conditions as
perceived by the model.

1  Introduction

The field of intelligent systems has matured to the point
where significant research is now being focused on
modeling human behavior.  Earlier research work, mostly
in the form of expert systems, concentrated on developing
means of representing and manipulating deep but narrow
and specialized knowledge efficiently and effectively.
Their objective was to provide expert advice in the process
of solving difficult and specialized problems.  This
objective has generally been met successfully, with
research in expert systems currently having shifted to more
efficient means of knowledge acquisition, and system
validation and verification.

Expert systems, however, have three significant
limitations in our quest for a truly intelligent system: 1)
they are, by definition, generally quite limited in breadth,
2) they typically do not directly control anything, and 3)
they do not learn easily.  Truly intelligent systems must be
able to interact with their real world environment in all of
its breadth and scope, as well as learn from it on a
continuous or semi-continuous basis.  Additionally, they
must be able to directly control their own actions if they
are to survive in the real world.

Much of the current research effort has centered on
developing intelligent systems that can do these things,
either as robots in the physical world, or as computer
generated entities in a simulation of the real world.  The
latter are most often used to assist in simulation-based
training, but have applications in entertainment and
control.

To be successful in modeling human behavior,
researchers must look to the human mind and attempt to
replicate its mode of operation. Doing this at the biological
level has been nearly impossible to do, as the inner
workings of the human brain and how that translates into
intelligence are not well understood.  Furthermore, it is
beyond the realm of modern science to be able to
reproduce brain tissue artificially.

Simulating the neural function in a digital computer
using connectionist approaches has shown significant
success when applied to certain classes of problems.  They
enjoy the distinct advantage of being able to learn when

presented with examples.  However, neural networks have
not shown success in demonstrating general intelligence by
themselves.  Furthermore, it is clear even to the most naïve
that the human brain does not employ the complex
mathematical algorithms which neural networks use to
learn.

Modeling human behavior at the procedural level has
shown significant promise.  Through introspection, humans
can and have been able to identify several high level
techniques used to solve some problems, especially that of
interacting with our environment in order to live, thrive
and survive in it.  Certainly, solving problems in the same
high level way as humans do is a step in the right direction.

The field of human behavior representation research
is basically divided in two parts: those working in robotics
as the embodiment of these models, and those working in
intelligent simulated entities for training.

Intelligent robotic research has generally focused on
giving robots the ability to handle fairly low level tasks,
such as route planning, obstacle avoidance, and searching
for specific objects in a closed environment.  A second
aspect of this work has been in reinforcement learning –
learning by experiencing the environment in much the
same way that a child learns not to touch a hot stove after
she gets burned once.

Research in simulated intelligent entities, on the other
hand, has focused on modeling a higher level of behavior,
such as that used in tactical behavior modeling.  This
different focus is largely a result of the need for displaying
tactically correct behavior in a wartime simulation.  While
route planning and obstacle avoidance have also been areas
of intensive work, learning has not been a major issue up
until recently.  More of interest has been to develop
efficient and effective models that truly represent tactical
behavior at a minimum of cost to develop as well as to
execute.

Human behavioral models, known in the military
simulation and training community as Computer
Generated Forces (CGF), have been successfully
incorporated in several significant simulation training
systems.  However, there is a serious need on the part of
these users to be able to validate the behaviors
demonstrated in order to ensure a sound training process.
But such validations are not easy.  This paper provides an
insight into the type of procedures that would be required
to adequately validate these human behavioral models.
However, prior to that discussion, a review of the most
common and popular means of representing CGF systems
would be appropriate as a way to set up the discussion on
their validation.

2  CGF Implementation Techniques

When a human tactical expert is asked what he would do
under certain circumstances, the response is typically
framed as a conditional.  “If this was green and that was
blue, then I would turn left”.  Thus, the most intuitive as



well as popular means of representing tactical human
behavior is through the use of rules.  However, rules have
the drawback that they are quite myopic in scope.  To
develop a system with any kind of tactical realism, a large
number of rules need to be developed and executed, as the
numerous conditions resulting from the many variations
can translate into an explosive number of rules for even
relatively simple tasks.  This is not efficient.  Furthermore,
gaps in the behavior can be easily left uncovered.  Whereas
these gaps can be easily filled with new rules, it is a
makeshift process that does not have natural closure.
Experts systems suffer from the same deficiency.  But the
domain of expert systems, being more limited and the
inputs more predictable, can easily tolerate the situation.

Because of its intuition and popularity, most of the
early systems that implemented CGF’s were based on
rules.  Golovcsenko [1987] discusses some Air Force
prototype systems that exhibit certain amount of autonomy
in the simulated agents.  One in particular, a special
version of the Air Force's TEMPO force planning war
game system, uses rule-based techniques to replace one of
the human teams involved in the game.

One notable CGF system is the State Operator and
Results system (SOAR) [Laird, 1987; Tambe, 1995].
SOAR takes a goal-oriented approach in which goals and
sub-goals are generated and plans to reach them are
formulated and executed.  These plans are in effect until
the goals are reached, at which point they are replaced by
new goals that address the situation.  However, SOAR is
based on the rule-based paradigm, which, as mentioned
before, has many disadvantages.

Another popular technique used in CGF systems has
been Finite State Machines (FSMs).  FSM’s have been
used to implement goals or desired states in the behavior of
the AIP [Dean, 1996].  These states are represented as C-
Language functions.  Three major FSM-based CGF
systems are the Close Combat Tactical Trainer (CCTT)
[Ourston, 1995], ModSAF [Calder, 1993], and IST-SAF
[Smith, 1992].  These systems all employ FSMs as the
representational paradigm.  The knowledge found on
FSM’s does not necessarily aggregate all the related tasks,
actions, and things to look out for in a self-contained
module.  This makes their formalization somewhat difficult
from the conceptual standpoint.  Some FSM-based systems
allow for the control of one entity by more than one FSM
at the same time.  This can be dangerous in that an
incorrect behavior can be easily displayed.

Other, less popular, alternative representation and
reasoning paradigms such as model-based, constraint-
based or case-based reasoning, although promising in some
respects, (see [Borning, 1977; Castillo, 1991;
Catsimpoolas, 1992]) are not "natural" for this form of
knowledge since they do not easily capture the heuristics
involved in tactical behavior representation.

Another common approach to the AIP problem has
been to use blackboard architectures to represent and
organize the knowledge.  One implementation [Chu, 1986]
uses separate knowledge sources to carry out tasks such as
situation assessment, planning, formulation of objectives,
and execution of the plan.  This system also implements
adaptive training so that the AIP can modify its action
according to the skills on which the trainee needs to
concentrate.  The system uses a modified version of Petri
Nets to represent instructional knowledge.  Work carried
out in the form of maneuver decision aids at the Naval
Undersea Warfare Center [Benjamin, 1993] has also
employed a blackboard architecture.  The objective of this

research is to assist the submarine approach officer in
determining the most appropriate maneuver to carry out to
counter an existing threat, or to accomplish a mission.

Another approach has come from cognitive science
researchers [Wieland, 1992; Zubritsky, 1989; Zachary,
1989].  These efforts do not directly address AIP's, but
rather, the closely related problem of cognitive modeling
of the human decision-making process.  Their efforts also
make use of a blackboard architecture.  The COGNET
representation language [Zachary, 1992] uses a task-based
approach based on the GOMS concept [Card, 1983; Olsen,
1990], in an opportunistic reasoning system.  In this
approach, all actions are defined as tasks to be performed
by the AIP.  The definition of each task includes a trigger
condition that indicates the situation that must be present
for that task to compete for activation with other similarly
triggered tasks.  The use of blackboard system, however,
introduces a high overhead and much added complexity.

As can be seen, there are several means of
representing the knowledge required to model human
behavior as it applies to tactics.  The problem remains how
to validate the behavior models in a way that makes all the
different representational paradigms transparent.  The next
section discusses some conceptual approaches to the
problem.

3  Potential Validation Techniques for Human
Behavior Models

Since by definition these models are designed to simulate
human behavior, it becomes clear that they must be
compared to actual human behavior.  Validation of the
more traditional expert systems is really no different, as
these attempt to model the problem solving ability of
human experts.  Expert systems have traditionally been
validated using a suite of test cases whose solution by
human domain experts is known ahead of time.  However,
these tests are generally static in nature – provide the
system with a set of inputs and obtain its response, then
check it against the expert’s response to the same inputs.
Time is typically not part of the equation, unless it is
already implicitly incorporated into the inputs (i.e., one
input could represent a compilation of the history of one
input variable). The techniques suggested by Abel [1997]
provide effective and efficient means of generating good
test cases based on the validation criteria specified for the
intelligent system. The Turing Test approach proposed by
Knauf [1998] is a promising way to incorporate the
expert’s opinion in a methodical fashion for time-
independent problems and their time-independent
solutions.

Validating human behavioral models, on the other
hand, requires that time be explicitly included in the
expression of the tactical behavior.  Such behavior not only
has to be correct, but also timely.  Reacting to inputs
correctly, but belatedly can result in the decision-maker’s
destruction in a battlefield.  Furthermore, tactical behavior
is usually composed of a sequence of decisions that are
made as the situation develops interactively.  Such
developments are generally unpredictable and, therefore, it
becomes nearly impossible to provide test inputs for them
dynamically.

Certainly the test scenarios could be “discretized” by
de-composing them into highly limited situations that
would take the time out of the equation.  However, several
of these would have to be strung together in sequence in
order to make the entire test scenario meaningful.  This
would be artificial, and the expert may have difficulty in



visualizing the actual situation when presented thusly.
Furthermore, interaction would not be possible.  Therefore,
I do not believe this would be acceptable as a mainstream
solution.

One alternative would be to observe the expert or
expert team while he/they display tactical behavior, either
in the real world, or in a simulation specially instrumented
to obtain behavioral data.  Certainly, using a simulation
would make the task of data collection and interpretation
much easier, at the cost of having to build a simulation.
However, since the models are to be used in a simulation,
it is likely that such an environment already exists.

Conceptually speaking, validation can be executed for
these types of models by comparing the performance of the
expert with that of the system while being subjected to the
same initial inputs.  The performance of each (the
intelligent entity and the expert) can be represented as a
sequence of data points for the observable variables over a
period of time.  Overlaying one on top of the other may
provide some indication of validity for the system’s
performance.

A complete match between the expert’s performance
and the model’s behavior would certainly justify validation
of the model.  Realistically, however, a significant amount
of deviation may exist between the two performance
records.  While some deviations may be indicative of a
serious discrepancy in behaviors, others may simply be a
different and equally appropriate way of achieving the
same goal.  Thus, expert input may be necessary to
determine what is correct and what is not correct.
Alternatively, an intelligent system could be developed to
perform this task of determining what is an acceptable
deviation and what is not, but it would also ultimately have
to be validated itself, and that would ultimately require
human expertise.

Furthermore, due to the interactive nature of the
model and the domain, the system being validated may
make a different decision from what was made by the
validating expert which, although correct, progresses into a
different scenario.  Consequently, the two performance
records could no longer be adequately compared, as their
situations may have diverged significantly enough to make
them not relevant to each other.

In reality, none of the above techniques provide us
with an effective and efficient means to validate the
performance of human behavioral models.  This leaves us
in a quandary, until we take into consideration how the
model was built in the first place.

Building the model in the traditional way –
interviewing the subject matter experts (SME’s) and
building the model by hand from their response to the
numerous queries made in these interviews, would in fact
place us in this quandary.  There would be little
relationship between the means of model development and
that of validation.  However, by tying the means of
building the model with the validation process, some of the
obstacles described above may be overcome.  This is
described in the next section.

4 Learning by Observation of Expert
Performance in a Simulation

Humans have the uncanny ability to learn certain tasks
through mere observation of the task being performed by
others.  While physical tasks that involve motor skills do
not fit under this definition (e.g., riding a bicycle, hitting a
golf ball), cognitively intensive, or procedural tasks can be
relatively easily learned in this way.  Very often we hear

people asking for examples of how to perform a task so
they can see how it is done.  If such is the case for humans,
certainly machines can be made to do the same type of
learning.

This idea was seized by Sidani [1994], who developed
a system that learns how to drive an automobile by simply
observing expert drivers operate a simulated automobile.
The system observed the behavior of an expert when faced
with a traffic light transition from red to green.  It also
observed the behavior when a pedestrian attempted to cross
the street.  Furthermore, it was able to correctly infer a
behavior it had not previously seen when faced with both,
a traffic light and a pedestrian on the road.  Sidani
compartmentalized the behaviors by training a set of neural
network, each  of which was called to control the system
under specific circumstances.  A symbolic reasoning
system was used to determine which neural network was
the one applicable for the specific situation.

Further work in the area is currently being carried out
by Gonzalez, DeMara and Georgioupoulos [1998a, 1998b]
in the tank warfare domain.  Using a simulation as the
observation environment, behavior is observed and
modeled using Context-based reasoning (CxBR).  For an
explanation of CxBR, see [Gonzalez and Ahlers, 1995].
Supported by the U. S. Army under the Inter-Vehicle
Embedded Simulation for Training (INVEST) Science and
Technology Objective, this project also extends the
concept of learning through observation by including an
on-line refinement option.  See Bahr and DeMara [1996]
for further information on the nature of the INVEST
project.

4.1 On-Line Refinement and Validation
The concept of refinement involves improvement of an
intelligent system during or after initial validation.  The
model being developed by Gonzalez, DeMara and
Georgioupoulos (which was learned through observation)
is intended to predict the behavior of a human combatant in
a federated simulation.  This is rather different from
conventional CGFs that attempt to simply emulate actual
entities in a general way.  Prediction also carries a much
heavier burden when it is regularly and continuously
compared to actual behavior, as is the case in the
application of the resulting model.  However, it provides
the opportunity to implement validation relatively easily.

A predictive model is required because an accurate
prediction of actual human behavior would reduce the need
for real-time on-air communications of the position of an
actual vehicle in the field to all others in the simulation.
Each live vehicle in the simulated exercise must be aware
of the position of all other live, simulated and virtual
vehicles in the simulated environment, which may or may
not be the same as the physical environment where the
vehicle is physically located.  Rather than communicating
its whereabouts constantly (which is expensive due to the
small bandwidth available), each live vehicle has in its on-
board computer a model of all other live and simulated
vehicles.  If the other vehicles all behave as modeled, the
personnel in that vehicle can confidently predict its
location and would need no update on its position.
However, it is unrealistic that a perfect model could be
found, in spite of the latest modeling and learning
techniques.  Each vehicle carries a model of itself in it on-
board computer.  It compares the actual position, speed and
other observable actions with those predicted by the model.
If in agreement, no action is necessary.  However, if a
discrepancy arises, all other models of this vehicle resident



in all the other vehicles (called “clone” models) are not
correctly predicting its behavior.  Thus, some corrective
action must be initiated.  Such action can be: 1) discarding
the model and providing constant updates through
communication, 2) modifying context in which the model
is on an on-line basis, or 3) permanently changing the
model to reflect reality.  This last step can be referred to as
refinement.

Therefore, a means to detect deviations becomes
necessary.  As such, an arbiter system must be developed
to determine when the model no longer correctly predicts
the behavior so that a correction is initiated.  This arbiter,
called the Difference Analysis Engine (DAE), basically
serves to compare the behavior of the human with that of
the model.

4.2 The DAE as a Validation Engine
The DAE is designed to ascertain when deviations between
the human and the model are significant enough to warrant
initiation of corrective action (i.e., communication
sequence).  However, it would be relatively easy to convert
the DAE into a validation engine instead.  The model and
the human expert could be reacting to the simulated
environment simultaneously, with the DAE continuously
monitoring them for discrepancies.  Upon discovering a
serious enough discrepancy, the DAE could note it and
either continue, or modify the model so that it agrees with
the human’s behavior.  Through the use of contexts as the
basic behavioral control paradigm, the requisite action
would merely be to suggest a context change in the model.
This new suggested context would agree with the expert’s
action and the validation exercise could continue in a
synchronized fashion.  While this would represent external
manipulation of the  model, a team of experts could
afterwards, in an after action review, determine whether
the model should be permanently modified to reflect that
change.

Alternatively, the change could simply be noted,
recorded and presented to the panel of experts at an after
action review.  The drawback to this is that unless rectified,
a discrepant decision by the model could serve to make the
rest of the validation exercise irrelevant, as the model may
be faced with situations that are different from that of the
human.

5 Summary and Conclusion

It is clear that validation of human behavioral models
introduce a new level of difficulty in the validation of
intelligent systems.  Conventional validation techniques,
such as the ones used for expert systems, may not be
effective for such a task.  A promising alternative exists
with the concept of learning and refining a model through
observation of expert behavior.  While this concept is
relatively immature and requires significant further
investigation, I feel that it represents a very viable
approach to this very difficult problem of validating human
behavior models.
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