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ABSTRACT

Low run-time overhead, self-adapting storage policies for priority queues called Smart Priority

Queue (SPQ) techniques are developed and evaluated. The proposed SPQ policies employ a low-

complexity linear queue for near-head activities and a rapid-indexing variable bin-width calendar

queue for distant events. The SPQ configuration is determined by monitoring queue access

behavior using cost-scoring factors and then applying heuristics to adjust the organization of the

underlying data structures. We show that optimizing storage to the spatial distribution of queue

access can decrease HOLD operation cost between 25% and 250% over existing algorithms such

as calendar queues. An SPQ-based scheduler for discrete event simulation has been implemented

and was used to evaluate the resulting efficiency, components of access time, and queue usage

distributions of the existing and proposed algorithms. 

Keyword:  Discrete event simulation; Priority queue; Adaptive algorithm 

1.0 Introduction

We present Smart Priority Queue (SPQ) policies for inserting, deleting, retrieving items in

the event queues of discrete event simulators. A fundamental capability required is an efficient

means of storing and selecting the events contained in the process queue.   The SPQ techniques

decrease average access overhead by selecting a more efficient storage structure for the particular

distribution of events encountered during simulation. Rather than specifying a single management

scheme for the priority queue of simulator events, the SPQ approach dynamically selects between
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structures such as a linear queue for near-term events and a calendar queue for more distant

events.  

1.1 Role of Event Management in Discrete Event Simulation

During discrete event simulation, time is considered to advance between a sequence of

explicit events which occur at discrete instants.  Although the management of time-flow in the

simulation can be handled either synchronously or asynchronously [4], the asynchronous

scheduling is often preferred [5]. In this case, a prioritized list of future events must be maintained

so that individual tasks can be scheduled for execution at the appropriate time.  

The data structure used for asynchronous time management in the simulator is the event

list of activities scheduled for simulation. The event list is organized as a priority queue with time

as the basis of prioritization for the position of the elements within the queue.  Early simulation

libraries used a linear linked list algorithm while more recent tools such as CSIM and YACSIM

[9], use more sophisticated algorithms such as the calendar queue [3] to improve performance.

The linear linked list algorithms, which store the events sequentially, have the disadvantage of

requiring a search from the beginning of the queue to determine the proper location in the queue.

Since each step in a simulation frequently involves scheduling new events for future execution,

this has the potential for dominating overhead when large queues are required.  The calendar

queue technique improves performance by bounding the number of comparisons, but introduces

additional overhead for resizing of bins during execution.  In practice, however, the frequency of

insertions in a small sub-range of the queue in some simulations allows the linear list to

outperform the calendar queue.

A standard metric for comparison of the relative performance of an event list management

algorithm is the time required for a HOLD operation [10][3].  A HOLD operation consists of first

retrieving the event at the head of the scheduling queue and then inserting a new event into the

appropriately prioritized location.  Measuring time spent to execute HOLD operations provides a

representative measure of event list overhead during simulation by exercising queue insertion and

removal.  Another fundamental task used to assess performance is DELETE operation which

removes a superseded event which is no longer pending.  Supporting arbitrary DELETE

operations can cause performance degradation for some priority queue strategies such as heaps.
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1.2 Motivation for Optimizing Queue Algorithms in Discrete Event Simulation

During simulation of a large scale discrete event simulation model that had an average

queue size more than 2,000 events, it was observed that a linear linked list outperformed a

calendar queue [2].  An investigation was initiated to determine the reason for the anomaly and to

find potential optimizations for managing the event list.  As previously suggested by Gonnet [7],

specific distributions of non-uniform events can occur during simulation that can impact the

performance of the event list storage strategy.  Likewise, Brown observed that queue statistics

should be continually monitored to determine which storage structure will minimize overhead for

the particular distribution of events encountered [3]. This paper investigates queue usage in a

large-scale simulation and presents a new priority queue algorithm that provides improved event

list performance.

1.3 Outline of Paper

     Section 2 describes previous work with respect to comparison of queuing strategies

suitable for discrete event simulation.  Section 3 presents event list statistics of the simulation

application used for algorithm comparisons.  Section 4 presents the design of the SPQ algorithms

along with the rationale behind their design.  Section 5 presents performance results.  Section 6

presents conclusions and a discussion on applicability to other applications.

2.0 Literature Review

Significant literature on the design of event lists has concentrated on efficient

implementations of the priority queue. In a priority queue the ordered structure of the elements

must be continuously maintained according to their relative time to be scheduled during the
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simulation.  For elements of equal priority, an accepted practice is to store them in First-In First-

Out order.  Figure 1 illustrates the various structures that have been explored for implementing

priority queues.  We will focus on linear and indexed data structures as they form the basis for the

SPQ techniques.

2.1 Linear List Priority Queues

Linear lists can be divided into subcategories of singly, multiply, and disjoint lists [8].  The

linear queue is formed by maintaining pointers to the head and tail of a singly-linked list.  Figure 3

illustrates a singly-linked linear queue containing an initial list of events to be scheduled at times

0.2, 0.4, 0.5, 0.9, 1.2, 3.5, and 7.2.  During an enqueuing operation, the events are stored in their

prioritized location by repeatedly comparing the simulation time of the new event to the

previously stored values.  A new entry has its priority compared first with the priority of the head

element and if it is less than the head then it is immediately inserted as the new head as shown in

Figure 2.  Otherwise, it is compared to the tail.  If it is greater than or equal to the tail then it is

appended as the new tail of the list. If it is neither a new head nor a tail, the priority is compared in
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Figure 4.   Linear List  after HOLD at TIME = 0.3
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Figure 2.   Linear List  after HOLD at TIME = 0.1
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Figure 3.  Linear List
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succession with each next item in the list until it is less than the succeeding entry.  Upon locating

the correct point, the new entry is inserted in the list by updating the corresponding pointers. For

example, insertion of the event a with priority of 0.3 in Figure 4.  The primary advantage of this

queue structure is that head of the list is always available without searching. Insertion and removal

operations generally require two pointer updates.  The disadvantage is that successive entries must

be examined until the correct entry is found.

2.2 Indexed Lists

    Indexed lists attempt to mitigate the drawbacks of linear queues by reducing the amount of

searching required to locate or insert an item. Voucher and Duval [10] introduced a time mapping

algorithm called the indexed list algorithm.  This algorithm consisted of a linear list for event

storage and an array of pointers to a set of dummy markers inserted into the list with the last

pointing to the overflow area as shown in Figure 5. It depicts the operation of the indexed list

algorithm showing the simplified version with array of three pointers and an overflow area. The

interval, DT, is set to 1. The notices with “X” are dummies.  The markers are a fixed-time interval

apart and as the current simulation time passes them they are moved forward into the overflow

area and inserted into the list at the appropriate time-ordered point.  In this implementation, time is

represented by an integer variable, and no finer subdivisions are allowed.  The time at which an

event is scheduled can be used as an index to select from the list into which the notice must be

placed. With a FIFO priority system, the new notice is placed at the end of the selected list, and no

scan is necessary.  Although this algorithm in its basic state must be generalized in order to be

widely applicable, the basic idea of grouping is useful to reduce the scan-time. However, the
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Figure 5.  Indexed List Algorithm showing Initial conditions 
with four event notices. time = 0.5; lower_bound =0
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implementation did not include a feedback mechanism for adjusting the spacing between markers.

The working variables are current which provides a pointer to the current event notice,

i_current  which indicates the array pointer to the current interval and lower_bound which

gives the simulated time for the beginning of the current interval. The last pointer in the array

delimits the overflow portion of the list.

The operation of an index list is  shown in Figure 5,6, and 7.  As shown in Figure 5 for time =

0.5 the current event is scheduled at 0.9 and the lower bound is 0. The events

scheduled at times 0.2 and 0.4 have already been executed.  Figure 6, depicts a HOLD =1.2,

where the current  event is scheduled for 1.2 with a lower_bound of 1.0.  As shown in

Figure 7, for a HOLD at 3.2 the current event is scheduled for 3.5 with a lower_bound at

3.0. 
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Figure 6.  Indexed List Algorithm showing Conditions after
 HOLD (1.2).  time =1.2; lower_bound = 1
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Figure 7.  Indexed List Algorithm showing Conditions after
 HOLD (3.2).  time =3.5;  lower_bound  = 3
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2.3 The Calendar Queue

Brown [3] introduced the Calendar Queue, which derives its name from its structural

similarities to a desk calendar.  This is a multiple list structure, but offers many similarities to

indexed list such as the TL structure of  Franta [ 6].  However, it has simplified the indexing

method and handling of overflows.  The basic concept is that two arrays hold pointers to the head

and tail elements of singly-linked lists of events.  Each element of the list stores the priority of the

event and a pointer to the next element.  As shown in Figure 8, the length of the array is equivalent

to the number of days in a calendar year. The figure depicts the queue with additional elements to

illustrate storage in days 0 through 7. The index of each array is equivalent to the count of number

of  days since the beginning of the year, i.e. entry 0 is the start of the year and entry  n-1  is the

last cell in the year where n is the number of days in the year.  Overflow of events on any day is

taken care of by placing the elements outside the current year, called outyear elements, in the

appropriate day of the calendar in time sequence.

The index is calculated as (priority/day_size) modulo year_size, and converting to an

integer value.  If year sizes are kept as power of two, the modulo operation becomes a binary

AND operation with a mask value of  n-1 where n is the year size.  Interior to each day, the

individual events are kept in priority order by scanning the list and inserting the elements in the

appropriate location.  

The calendar queue is implemented as a set of singly-linked lists where events are placed

in time order.  The correct list is determined by scaling the priority by the bin width W, and

determining the bin number by taking the modulo of the queue length B.  The resulting value

forms the index into the two arrays that contain pointers to the head and tail elements of the

appropriate lists.  Overflow events are any events not in the current year of the calendar.  Figure 8

illustrates a calendar queue with W equal to 1 and B equal to 8.  During operation, the values W

and B are adjusted to keep the number of elements in each list low.  The key mechanism for

calendar queue's improved performance over the linear queue is that it reduces the average

sequential search length to half number of elements in a bin as compared to half the number of

elements in the total list.

However, there is a price to pay for this capability, and it consists of several factors.  The

first is the basic bin selection process or indexing, this requires conceptually a floating point

multiply, a floating point to integer conversion and then an integer modulo operation in addition to

the compare and step, whereas, the linear search requires only comparison and advancing pointers.

Another is the queue resizing cost, which requires sampling data in the queue, to calculate distance
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between events and moving the data to the appropriately spaced bins.  The third is keeping track

of the head element of the bin.  In the linear queue, the head is always first in the list.  In the

calendar queue, there are as many list heads as there are bins.  In a model with smooth evenly

spaced events, the next head is always near to the current bin.  In a worst case, it can lead to

searching for the earliest event over the entire set of bins.

 Brown identified several areas of concern that could cause variation in the expected

performance of the calendar queue[3].  The first is that if the number of events in the 

queue is much smaller or much larger than the number of buckets, it will not function efficiently.

He addressed this by implementing an auto-sizing mechanism which caused a readjustment

whenever the queue sized changed by a power of two. Brown showed that this was bounded by

the equivalent of 3 HOLDs in overhead cost.  However, this allowed the possibility of oscillation
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Figure 9.  Smart Priority Queue (SPQ)
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between the successive powers of two, i.e. successive enqueues to 2n and then successive

dequeues to 2n-1.  It is also possible for events to be clustered. This is a situation where the

average space between events in a cluster is short, but have several years between clusters.  He

addressed this by testing such that if a full year was empty, it switched to search for earliest event,

before normal enqueue/dequeue operations.  Figure 9 depicts a new structure that addresses some

of these concerns that will be dicussed in detail in section 4.

2.4 Relative Performance

Vaucher and Duval compared the performance of several algorithms which could be used

to schedule events in a general purpose discrete simulation system [10]. Each algorithm is

compared experimentally for performance of the HOLD operation over a range of queue sizes

varying logarithmically from 1 to 200 elements.  Table 1 presents the results of a previous study

by Jones which compared average and worst-case performance of 11 different algorithms this

showed performance advantages for splay trees over a wide range of conditions and linked lists

(linear queue) for short lists [8].  Brown compared his calendar queue experimentally to the linear

queue, and a queue implemented with a splay tree.  The calendar queue consistently outperformed

the splay tree for the scenarios tested. In fact, the calendar queue exhibited nearly constant-time

performance for many queue sizes, while splay tree execution time increased  O(log n) or  in worst

case linearly with queue size.
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Priority-queue
implementation

Code
sizea

Performance

Average          Worst 

Relative
speedb

Comments

Linked List 47 O(n) O(n) 11 Best for n < 10
Implicit heap 72 O(log n) O(log n) 8
Leftist tree 79 O(log n) O(log n) 9-10
Two list 104 O(n0.5) O(n) 9-10 Good for n < 200
Henriksen's 68 O(n0.5) O(n0.5)c 1-7 Stable

Binomial queue 188 O(log n) O(log n) 1-7
Pagoda 110 O(log n) O(n) 4-8 Delete in O(log n)
Skew heap, top down 56 O(log n) O(log n)c 5-7
Skew heap, bottom up 103 O(log n) O(log n)c 4-6 Delete in O(log n)

Splay tree 119 O(log n) O(log n)c 1-3 Stable
Pairing heap 84 O(log n) O(log n)c 3-6 Promote in O(1)
a The total lines of Pascal code for initqueue, emptyqueue, enqueue, and dequeue.
b 1 is fastest; 11 is slowest: 
c An amortized bound; single operations may take O(n) time!

Table 1.  Results of Jones Study [8]



3.0 Utilizing the Event Distribution Characteristics

In many simulation systems, event activity is not uniformly distributed throughout the

simulation time. Frequently the majority of activity occurs over a small interval at any time, for

example near the beginning of the queue.  This characteristic of the event scheduling distribution

can be used to optimize queue storage structure. For example, consider a case study [1]  involving

simulation of a distributed communications system using YACSIM [9].  In this case study, the

Range Data Measurement System (RDMS) for the U.S. Army was simulated where asynchronous

communication between 2,000 source entities takes place over shared data channels to a central

processing site.  Several processors received the data in parallel and prepared it for retransmission

in variously formatted data streams to other sites.  To gain insight into placement and removal of

activities on the event queue, several scenarios were simulated and statistics were gathered [2].

     There were several classes of players each making different demands on the

communications system and message length.  There is also a process that generates random events

that interrupt/initiate actions of these players.  There is an additional process that monitors the

loading of the communication channels and tries to keep the load balanced between the channels.

These activities primarily influence the start of the message, but not the activity generated by the

message.  The reason the given message is delayed is because another message is being processed.

On average each player initiates a message once every 5 seconds. Using a system time of 1

millisecond on there will be a new message every 2.5 time units on average, 5000

milliseconds/2000 messages.  At this same time, that player will queue up to start a new message

5000 time units in the future.  This message will occupy a communications channel for

approximately 70 time periods and simultaneously interrupt the receiving processor for each byte

transferred approximately 2.5 time units.  This interrupt causes the processor to be used for 0.04

units of time.  At the end of the communications channel time the message passes into the

processor's where it goes through a long sequential series of 75 very short steps of 0.0002

milliseconds each which potentially conflict with data being received over one of the other

communications channels or being prepared to go out.  There is a shared common bus in the

system that would tend to drive the ordering to be essentially sequential.    The result is that on the

average 1/75th of the events are queued near the end of the queue and 5/75 within 5 events of head

of the queue and the balance at the head of the queue.  Since the distribution of events was highly

non-uniform, this lead to our study of self-adapting queue strategies used in the smart priority

queue.
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3.1 Evaluation of Queue performance for RDMS model. 

The choice of data structure used to maintain the event list can significantly impact the

efficiency of a simulation. In the case study of  RDMS, despite its relative advantages, the

calendar queue exhibited a cyclic nature and sensitivity to high head-end activity.  The YACSIM

library of simulation routines used to simulate RDMS did provide alternate strategies and

evaluation tools that assisted in characterizing the problem.  They provided optional queue

implementations and debugging tools that allowed the capture of the queue at any instant.  Figure

10 summarizes a bin snapshot as a histogram of fifty bins constituting 2.44% of the event queue,

taken after the model being simulated has settled steady state.   Bins 0 through 8 have only out

year entries if any, while bin 9 has one last entry in the current year.  Bin 10 has 47 current entries

with one out year entry.   The number of entries roll off to half size by 13 and empty by bin 49.  A

year for this queue is 4570 milliseconds, comprised of a W=2.23136 millisecond binwidth times

2048 bins, and the balance of the queue varies from 0 to a maximum of 5 entries with as many as

7 empty bins in succession.

A representative metric for the overhead required to support the distribution of event list

activity is the number of data comparison operations for each event insertion.  There were

approximately 7.5 million insertions for one simulation run.  Figure 11, shows the distribution of

the baseline linear queue which had 4.5 million insertions at the head of the queue. The  maximum

search length was 2,301 and the majority of the events required more than 10 comparisons,

however that the majority of events occurred near the head.  Figure 12 shows the improvement

offered by the baseline calendar queue in YACSIM with a maximum search length of  95
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comparisons. Thus, calendar queue effectively limits the maximum amount of time for any given

operation, however the majority of the events are close to the head.  

3.2 Model Analysis

The above data confirms that the majority of event list activity occurs near the head end of

the queue.  It also showed that a new headbin, the bin with the current head of the queue, would

contain as many as 75 entries with another 75 entered and deleted during its lifetime.  The bin at
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Figure 11.  Distribution of search Length in DDC using a Linear Queue
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location headbin+1 was likely to have 45 entries.  Since the default bin size is a fixed value of just

3 times the average event spacing calculated each time the length of the queue is adjusted, the

model under simulation may reach a steady-state queue length, before it reaches a steady-state

event distribution.   Further analysis showed that all 2000 players are scheduled to start, and up to

120 additional events are scheduled, prior to the first increment in simulation time.  In this

situation, the model does not generate these closely spaced events until an external trigger is

detected, the automatic width calculation in the calendar queue does not get the opportunity to

execute because it never gets to see typical event spacing for this problem.

In summary, analysis and experimental measurements demonstrate scenarios with a high

degree of head-end activity can occur after the queue size has reached steady state.  Since a linear

list has lower traversal overhead for near events, a simple linear queue can outperform the

calendar queue for simulation with a heavy head-end activity.

4.0 Smart Priority Queue (SPQ) Data Structure

In order to accommodate non-uniform distribution of event list activity, several different

structures based on modifications of the calendar queue were developed and evaluated.  Once the

benefits were fully understood, a distribution-adaptive data structure was developed to provide

stable performance across a wide range of distributions.

The characteristics of the model emphasized that an optimal queue structure for event list

management requires low overhead for the accesses that occur most frequently, such as head

insertion and deletion.  Furthermore, the structure should incur the minimum number of

comparisons for all insertions.  The list structure must be capable of accommodating rapid

arbitrary deletes.  In addition, the usage distribution can be difficult to describe analytically and its

characteristics can change throughout a simulation run.  However, a simulation library user should

not be burdened with whether the selection of the appropriate priority queue structure for a

particular simulation.  Ideally, the priority queue would be close to optimum for all distributions.

To satisfy these objectives, a dynamically-adaptable queue structure is required to consistently

meet the following performance goals:

� minimize the total number of operations required to access the most frequently scheduled

events,

� reduce the overhead cost of sample taking, resizing, finding the new head, by reducing their

frequency of invocation,

� perform threshold testing only when beneficial, and
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� prevent oscillation in the storage structure during operation.

Nonetheless, adaptive mechanisms create the potential for oscillation.  Although Brown

identified the potential for oscillation, models used in his experiments did not excite this

oscillation.  While in an analog circuit, the performance cost of feedback is quite often ignored

because parallelism is assumed among the feed-forward and feedback paths.  However, in an

adaptive algorithm, the cost of employing feedback during discrete event simulation directly

increases simulation overhead, i.e. the same processor is employed for both the direct actions and

the feedback operations. 

Notably, the data structure with the least absolute operation cost is the linear singly-linked

list.  However, the linked list loses its performance advantage if its length exceeds about entries 10

[8], so an indexed structure such as a calendar queue is required to limit the list length and store

items that overflow this length.  Calendar queue performance can be adjusted by altering the width

and number of bins.  The primary disadvantage of the adaptive structure are the three components

of overheads:  sensing,  evaluation, and adjustment.  Their penalty can be reduced by minimizing

the number of operations executed in the primary execution path and then amortizing high-cost

routines such as adjustment over a large number of HOLD operations.  The working of the SPQ

can be explained using the Flowchart in Figure 13,  

4.1  Activity Feedback Counters

The first three activity counters allow tracking of the individual paths and calculation of

queue size and average insertion cost.  New_bin_count allows the calculation of average

number of get-head operations per head_list change.  If this number is too low then it

indicates that the bin-width is to narrow.  The head_over and bin_over indicators are counts

that give an indication of  the bin_width being too wide as well as indicating an increase in the

average number of compares per insertion.  The number of these occurrences is more important

than the number of compares per occurrence because each previous insertion that contributed to

the length of the list, were also counted.  Bin_tail_over is an indication that the calendar year

is too short i.e., not enough bins. This also indicates an increased number of compare operations.

Skipped-count is another indicator of narrow bins as well as an indicator of bursty data.  It

reflects the additional hold cost used in calculating optimal queue configuration.

Skipped_year_count gives an indication of large gaps in data and has a cost proportional to

the year-size or number of bins.  This indicator identifies when the number of bins should be

reduced.
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Figure 13.  SPQ Insert Operation
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4.1.1. Sensing Cost

The first cost of an adaptive algorithm is sensing.  In Brown's case, he chose tracking of

the queue size.  For the SPQ case, since we also wanted to check other characteristics as well, the

counts for each path were maintained separately.  Different combinations of these counts could be

used to determine queue size, activity, and where excessive operations occurred. Yet, we sought to

keep the complexity of tracking information at the same level as Brown's.  The other costs can be

reduced by periodic sampling.  The sampling strategy used is based on the observation that a

change in the structure of the event list is not necessary until the distribution has substantially

changed its characteristics.  This is indicated by either excessive compares required for insertion,

or excessive number of bins traversed between successive head lists.  Therefore, insertion compare

counts are monitored, and if they exceed a threshold, further tests are invoked.  Likewise the

number of bin changes are also monitored.

The SPQ is designed to minimize the total number of queue overhead operations by

reducing the equivalent number of compares in the most frequently executed operations.  The

most frequent operation, other than examining the head of the queue, is removal of the head

element.  The overhead other than the counting operations over a linear list, is that the next pointer

indicates a dead-end path more often.  This signals the SPQ to transfer the following bin from the

overflow structure to the head list.  To optimize the queue, it is possible to trade off the frequency

of changing the head list to the number of elements searched in the head list.  For this purpose, the

head list is initialized to contain 5 elements as a minimum to invoke this tax at most 20% of the

time.  The second factor is to minimize the number of operations required to move the list from

the next bin to the head list.  This was improved by having a pointer to the last element in the

current year maintained during insertion.  The result is to transfer the bin head and tail pointers to

the head list and then setting the bin pointers to the head and tail of the next year.  On the average

the latter step requires one additional compare operation.  Due to the high activity rates close to

the head this adjustment, this was found to occur for less than 2% of the HOLD operations.

The next most frequent operation was insertion at the head of the queue.  In this case, the

SPQ behaves the same as the linear list with only one compare required besides the count.  The

next choice is to determine whether the new priority will be inserted in the head list or the

overflow.  Once the decision is made to place the event in the overflow structure, the SPQ

operates very similar to the calendar queue.  The result of using a separate head list is that for all

elements stored in the calendar structure there are two compares, but over 50% of the insertions

have been avoided. Bin hashing calculations and all head deletes are recouped in the bin indexing
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operation.   Another enhancement over the calendar queue is that the second pointer into each bin

is not strictly a tail pointer, but rather a pointer to the head or the last entry in the current calendar

year.  This adds one additional compare for those events inserted over a calendar year away, but

minimizes the number of compares required to transfer bin data to the head list. Insertion over a

calendar year away occur rarely by the resizing design of the calendar queue.

Each list body insertion is monitored for the number of compares required to find the

insertion point.  If this exceeds a threshold value then further evaluation is initiated.  The first test

performed in the evaluation is to determine whether enough operations have occurred since the

last restructuring of the queue for a new restructuring to provide potential benefit.  This is a simple

threshold comparison based on values calculated during the previous restructuring.  This test

serves as a damping function to insure the SPQ doesn't spend more operations adapting than it can

save by restructuring.

4.1.2 Filtering Costs.

     The second cost is analysis or filtering.  In Brown's case it was a simple threshold test:  if

the queue size was greater or less than the thresholds, queue resizing was required.   For SPQ,

heuristics are used to first to determine whether a change is required and second what the

parameter values should be for the resizing.

Six counters are used to monitor the performance.  These are linear_head,

linear_dist, overflow, delete_count, get_count, and new_bin_count.

The first three of these reside in the separate branches taken in the priority queue for any activity.

The last is incremented every time a bin is moved to the head list.  This minimizes the cost of

tracking the queue performance.  All other monitoring is invoked only when an insertion occurs

outside of the expected range.  These are considered overflow conditions and are recorded by

feedback counters for each of the following conditions:

� Head_over:  an insertion occurs in the head-list that takes over 6 compares. 

� Bin_over:  an insertion occurs in a bin that takes over 4 compares.  

� Bin_tail_over:  an insertion occurs on the end of bin-list that takes over 3 compares.  

� Skip_count:  the number of empty bins skipped, and

� Skip_year_count:  the number of times a search had to be performed to find a new

queue head.  

When any overflow condition occurs, the first level of testing occurs.  This first level is

simply to determine if adequate activity has occurred in the queue to justify a change.  It is a
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threshold that is proportional to the queue size denoted by N. This test is a comparison of the sum

of the activity counters to the threshold.  The second test is to determine if the operational cost to

make a change is less than the cost of allowing the overflows to continue.  If the threshold is

exceeded then optimizing calculations are made to determine the predicted queue parameters.

These are filtered and compared to the current parameters and if the changes indicate improved

queue performance the queue is adjusted.  In all cases, the expected  performance improvement

must outweigh the operational cost of making the change.

4.1.3 Correction Costs

     The final cost of feedback is correction.  This is very expensive since it means setting up a

new queue with corrected parameters then moving the contents from the old queue to the new one.

Another consideration for feedback is response time, or how soon are adjustments made after the

distribution changes.  To make the queue more responsive if a change is required, the activity

threshold is reduced to a value of 8 times the queue size from the nominal 100,000 operations.  As

long as changes are indicated then it remains at this level, once changes stop occurring the next

check is performed at an interval equal to the number of operations since the last change.  This has

an effect of doubling the threshold until it exceeds 100,000, which is then used as the steady state

sampling threshold.  All heuristics have been grouped into one module for easier tailoring.

4.2 Performance Comparison

To establish a basis of comparison, it is possible to discuss cost of operations in terms of

equivalent linear queue sizes.  For most models the developer of the model can roughly estimate

the equivalent linear queue length for the steady state operation.  We intend to show that this
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Operation Cost (normalized
instruction cycles)

Head_over  7
Bin_over  9
bin_tail_over 10
Skip_bin  6
New_bins  4
Search 3*B
Width 100
Resize 6*N

Table 2.   Comparison Equivalent for Optimization Calculations



implementation has a relatively small penalty for short queue sizes and is of order(1) after the

average length exceeds the cost of the indexing operation.

5.0 Experimental Queue Comparison

Initial performance comparisons were based on total user time over the execution of the

model for a repeated simulation run.  Output data from each run was compared to verify that the

model behaved identically for each run.  This also verified that the enqueing technique did not

change the FIFO ordering of events of the same time.

The results shown in Table 3 demonstrate the improvement gained from the changes to the

queue implementation.  Since the data listed in Table 3 indicates the wall clock execution time of
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Queue Type Execution Time (Seconds) Variation in Execution time

Linear 1072 0.707 %

Calendar 696 1.917 %

Smart Priority

Queue (SPQ)

544 1.399 %

Table 3.  DDC Performance Comparison 

Figure 14.  Search Length Distribution in a SPQ
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the entire simulation, queuing overhead is just one component.  Thus, a 21.8% reduction in wall

clock time for the entire simulation by using SPQ rather than calendar queue is even more

significant due to the changes is masked by the time required for the model to generate the data

being enqueued.  For this reason, and to further determine whether additional changes may be

beneficial, the queue implementations were further instrumented.

5.1. Queue Instrumentation.

For each path through the queue maintenance routines, overhead statistic counters were

added.  When this path included a loop structure, the loop count was included.  Counts for paths

with no loops were accumulated and reported for the total simulation.  Paths with loops had their

results reported upon exit from the loop.  The results are presented in Table 5. Figure 11, 12, and

14 provide the distributions in graphical form.
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Counter Description
Linear_head The number of insertions at the head of a linear list
Index_head The number of insertions at the head of a bin found after

calculating the index.
New_headbin The number of insertions at the head of the queue for the

calendar queue and also part of the indexhead count.
Linear_tail The number of insertions at the tail of a linear list.
Index_tail The number of insertions at the tail of a bin found after

calculating the index.
Index_empty The number of insertions into a previously empty bin. 
Linear_distrib The number of insertions in the interior of a linear list.  The

average number of elements into the list where the insertion
took place.

Index_distrib The number of insertions in the interior of a calendar bin.  The
average number of elements into the bin where the insertion
took place.

Get_head_linear The number of element removals from the head of the linear
queue as the event is activated.

Get_head_bin The number of element removals from the head of the calendar
queue as the event is activated.

Get_head_empty The number of times the get_head action empties a bin.

Table 4. Statistical Counter definitions



5.2. Statistic counter definitions.

To collect statistics counters were used in various paths.  These counters are only present if

selected at compile time.  Each counter is described in Table 4.   There are 6 counters related to

head-of-queue operations, 2 related to tail-of-queue operations, 2 related to the distribution, and 1

indicating the first addition to a bin.

5.3. Comparison of the results.

As shown in Table 5 the calendar queue outperforms the linear queue for the RDMS

simulation by reducing the the number of comparisons (Figure 11, and 12) required to insert into

the body of the queue.  The SPQ further improves performance by taking advantage of the low

overhead of the linear queue for the get head operation and further reducing the number of

compares (Figure 14) to insert events in the body of the queue.  Both the calendar and the SPQ

queues introduce additional costs for monitoring and adjustment, but this is more than

compensated for by the reduction in the number of compares required to order the queue. 
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OPERATION LINEAR CALENDAR SPQ
Linear_head 4.52M 4.52M
Index_head 4.64M 678K
newheadbin 4.52M
lineartail 879 265K
indextail 89.6K 494K
indexempty 222K
lineardistrib 2.82M 711K
indexdistrib 2.62M 445K
TOTAL
INSERTIONS 7.35M 7.36M 7.35M
Total Index 7.36M 1.39M
Compare 319.28M 28.69M 1.78M
getheadlinear 7.35M 7.35M
getheadbin 7.35M
TOTAL
DELETIONS 7.35M 7.35M 7.35M
findheaddist
ave

7.35M
1.01

14.9K
1.97

width samples 108
width change 11
resize change 10 10
TOTAL
Compare Equivalent 359M 155M 59.0M

Table 5.  Path Counts and Comparison Equivalents



6.0 Conclusion

Since since short hold time events can occur much more frequently is a simulation than

long hold times, adaptive queue management techniques that capitalize on this characteristic can

significantly reduce queue overhead..  Adaptive techniques were successfully applied by

developing the SPQ to allow O(1) performance for these distributions.  An important

characteristic is low-overhead sensing of queue performance, which in turn triggered the adaptive

measures required to bring the queue back within the optimal range of operation.  A key benefit of

these results is that they allow the prospective user to have confidence that the event queuing

distribution will not drastically change the execution time of the simulation model.

SPQ performance whether analyzed from an operation count or a timing exercise, can

show a reduction in overhead of greater than 50% in comparison to the calendar queue, and will

perform no worse than the better of the linear queue or the calendar queue individually.  Analysis

of  the SPQ shows that it will perform comparably to a linear queue for less than 8 events and will

exhibit nearly constant time performance for larger queue sizes.  SPQ performance can be shown

to be better than that expected for binary queues with less complexity in the primary paths of

execution. The SPQ algorithm has been used with several simulations and the source code  is

available from the author. Follow-on work includes tuning the heuristics for special cases where

the dynamics of the distribution raise the average insertion cost appreciably.  
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