
ENABLING TECHNOLOGIES FOR
EMBEDDED SIMULATION & EMBEDDED TRAINING

Hubert A. Bahr
HQ STRICOM AMSTI-ES

12249 Science Drive Suite 1403A
Orlando, FL 32826

407-384-3874
Hubert_Bahr@stricom.army.mil

Claude W. Abate
Sherikon, Inc

12249 Science Drive Suite 140
Orlando, FL 32826

407-384-5397
CAbate@Sherikon.com

Keywords:

Embedded Simulation, Embedded Training, Autonomous Trainers

ABSTRACT
The army has placed a renewed emphasis on an embedded training capability as a result of lessons learned
from the Advanced Warfighting Experiment (AWE) 97-06 on the potentials of digitization. Through the
Inter-Vehicle Embedded Simulation Technology (INVEST) Science and Technology Objective (STO), the
Simulation Training and Instrumentation Command (STRICOM) will develop the technology that will lay the
foundation for incorporating embedded simulation into future and legacy combat vehicles. This paper
presents current status and future evolution of the enabling technologies needed to fully embed these
technologies into a combat vehicle. These ES systems will support both training and operational (go-to-war)
enhancements for the Army XXI and Army After Next inventory of combat vehicles. The key enabling
technologies for an autonomous vehicle capability include: low cost image generation, live-virtual object and
terrain integration, virtual target injection into sensor displays, synchronized semi-automated player models,
simulation filtering tool, intelligent tutoring system, time-based and UWB communication, and automated
vehicle model development and optimization.

ENABLING TECHNOLOGIES FOR EMBEDDED SIMULATION &
EMBEDDED TRAINING

By Hubert Bahr and Claude Abate, STRICOM

Introduction
To fight and win on the modern battlefield two
things are required; weapons systems that
out perform the opponent’s weapon system,
and crews that are better trained to use the
weapon system effectively. A cost effective
means of improving weapon system
performance is Embedded Simulation (ES),
which includes Embedded Training (ET) or
the capability to train and maintain crew
proficiency on the same equipment they will
go to war on, and the Embedded Operations
(EO) functions of situational awareness (SA),
mission rehearsal (MR), command
coordination (CC), critical decision making
(CDM) and course of action analysis (COAA).

The competition for better weapons is one
component of the challenge and the other
involves training the crews to be more
proficient than the opponent. But there are
training costs associated with more complex
weapons systems. To date, stand alone
trainers have been employed at the school
house and in the units. The power projection
army of the future will have to spend more
time maintaining task proficiency while
stand-alone trainers cannot meet the
deploying force requirements and are too
costly to operate and maintain. One option
that will overcome this deficiency is a training
system that is integrated into the vehicle.
However, any sub-system that is integrated
into the vehicle becomes a luxury unless it
provides improved combat effectiveness. For
this reason, the proposed approach of
embedded simulation (ES) technology
addresses a system that provides both
training support and go-to-war capabilities.
An expanded discussion of ES training uses
can be found in reference 1.

In this paper we are going to walk through the
various levels of training applications
(gunnery) from a single vehicle to multiple
vehicles to multiple vehicles participating in
live fire and force-on-force exercise similar to
training conducted at the Combat Training
Centers (CTCs) and finally go-to-war
examples.

Background
While stand alone trainers such as
COFT/AGTS, SIMNET/CCTT and M-1 Driver
Trainers have served the Army of Excellence
well, technological advances and
miniaturization now present the ability and
affordability for embedding crew and
collective training systems into the vehicle.
We will refer to these ground combat systems
with an embedded training capability as
“autonomous” trainers.

The goal of the Inter-Vehicle Embedded
Simulation Technology- Science and
Technology Objective (INVEST-STO)
program is to develop and demonstrate the
technology that will lay the foundation for
incorporating ES and ET into future as well
as legacy vehicles.

The enabling technologies and components
used to run an Embedded Simulation System
(ESS) are basically the same for the stand-
alone trainer with the exception that they will
be smaller, faster, more powerful and less
expensive. Common components include
image generators, simulation computer,
Semi-automated Forces (SAF), data logger,
terrain database, communications and
instructor operator. Stand alone Image
generators of today are located in large racks
and wired to monitors located at the various
crew stations. In the future they will be no
larger than a card and the images projected
directly into vehicle sights or sensors. The
large rack mounted computers will be
replaced by a very small and powerful lap top
size computer that is accessable to the crew
and loaded with software (SW) containing
current ModSAF and world terrain database
models. An application hardware (HW) data
logger will be linked into the simulation
computer to record crew actions and support
AARs. The only common component that is
non-applicable to an ESS is a dedicated
instructor operator because that task belongs
to the vehicle commander or senior cadre
personnel.
When units deploy to a combat zone in
response to a rapid deployment mission in
the next century, the benefits of autonomous

trainers become readily apparent. In addition,
the dual-use design of the ESS can be used
to enhance operational effectiveness.

ESS Training Applications
Let’s assume that in any future combat
system the crew will have to be trained to
maneuver and engage targets using a highly
sophisticated suite of fire control sensors and
devices. The design of the ESS will be such
that the crew can hone its maneuver and
gunnery skills by projecting selected training
exercises into vehicle optics or sensor
systems. Due to advances in technology and
miniaturization, the graphics card and open
scene visual processing will be capable of
displaying a terrain database (world models
support SW), and the SAF (CGF support SW)
will display the target array on to the
database. These SAF entities will be fully
functional (move, shoot and maneuver) and
replicate enemy capabilities. The on-board
data logger will record all engagements for
follow-on After Action Review (AAR) by the
unit cadre or vehicle commander. This
training can be conducted in the motor pool,
assembly area or enroute to a combat
theater. Training can be tailored to meet
individual or crew (collective training) needs
in terms of tactical conditions
(offense/defense), force ratios, degree of
difficulty in terms of probably of hit & kill, and
environmental, terrain and light conditions.
This provides a virtual 360-degree battlefield
with ground and air targets.

Training Example
Training will follow the normal crawl, walk,
run strategy starting with a stationary single
crew exercise and progress to multiple
moving vehicles in a combined arms live fire
exercises. However, autonomous trainers
require a further segregation of exercises in
terms of simulation mode, i.e. (1) live veh
firing virtual rounds vs. virtual target on virtual
terrain; (2) live vehicle firing virtual rounds vs.
virtual target on live terrain and (3) live
vehicle firing live rounds vs. virtual target on
live terrain. The technology / engineering
challenges associated with each mode are
listed below.

1. Live vehicle firing virtual rounds vs.
virtual target on virtual terrain requires:

a. geometric pairing vice laser pairing
b. aim point determination
c. realistic fire on target effects
d. scenario generation

(a) Geometric pairing will be required
because a laser pairing system will not
work between live and virtual targets (no
vehicle present to provide a laser return).
In virtual on virtual simulation shooter-
target pairing is practically inherent
because the locations and orientations of
the vehicles and weapons are known
almost perfectly in the simulation world.
Engagements are simulated by
computing the ballistic flyout of simulated
rounds and determining where they
impact on target or the terrain. The
geometric pairing solution takes place at
the time of ranging to the target (in the
shooter’s sight picture). The on board
simulation computer calculates the
distance to target and stimulates the
vehicle to enter the appropriate range
return in the gunners sight.

(b) Aim point determination will be calculated
by capturing, at the instant of firing, the
crosshair location with respect to the
target. In a virtual on virtual engagement,
the locations and orientations of vehicle
are known essentially perfectly (they are
synthesized by the simulation) and their
orientation relative to each other are
easily derived from their world
coordinates. The simulation computer
knows the relative position of crosshair to
the target and stimulates the appropriate
burst on target effect. Location of impact
is also needed to determine target and
casualty effects.

(c) Realistic fire on target effects models are
stored as part of the terrain database and
will be generated by the IG at the time of
round impact on the target. Obscuration,
gun recoil and visual tracers will also be
stimulated in the sights of the firing
vehicle at the time of firing.

(d) Scenario generation would be
accomplished at the battalion level and in
accordance with published gunnery
tactics, techniques and procedures. The
scenarios developed in this example,
would be a series of crew gunnery
exercises or firing tables designed to
train or sustain crew proficiency. All
targets would be virtual and arrayed to
match current enemy fire and maneuver

doctrine. Firing scenarios can either
reside on the vehicle simulation computer
HW, on a CD-ROM or ported down to the
using unit or plugged into the removable
storage application HW.

2. Live veh firing virtual rounds vs. virtual
target on live terrain requires:

a. terrain fidelity and terrain correlation
b. injection of virtual target into a live

scene

(a) Terrain fidelity and terrain correlation
supports a clear image of the virtual
target that is spatially correlated to the
live terrain. For example, the virtual
target must realistically move over the
live terrain and not give the appearance
of floating above or sinking into the
terrain.

(b) Injection of virtual target into the live
scene or augmented reality involves the
process of generating virtual images that
appear to fit seamlessly into the real-
world environment. A critical requirement
is image clipping or removal of those
virtual images that should be partly or
fully obscured by intervening real-world
objects.

3. Live veh firing live rounds vs. virtual
targets on live terrain requires:

a. GPS location of firer
b. Vehicle/ hull attitude
c. Gun/turret orientation (AZ & Elev.)
d. Safety overwatch (observer console)
e. Aim point determination (GPS

Interferometry)
f. Geo-pairing

(a) All vehicles will be equipped with a global
positioning system (GPS). This system
accurately identifies the location of the
firer in terms of its X & Y coordinates and
every other friendly or enemy vehicle in
the exercise can be tracked and geo-
paired for gunnery purposes.

(b) The hull attitude of the virtual target is
important to determine the strike of round
and to calculate vehicle damage.
Orientation of a virtual vehicle influences
its vulnerability and ability to identify and
engage the live vehicle. The simulation

computer on the live platform is
generating this information.

(c) Gun orientation further defines the virtual
vehicle’s ability to identify and engage
the live vehicle. The simulation computer
on the live platform generates this
information.

(d) If this technology is used to replace
wooded targetry on live fire ranges at
home station or at the CTCs, then it is
essential to have tower or safety officer
overwatch in order to see the live
engagement of a virtual target. Safety
over watch can only be accomplished by
providing a safety-overwatch console
with the virtual target array similar to
those on the firing vehicle. A simulation
computer and image generator (IG)
capability must be available to safety
personnel or sent by telemetry from the
firing vehicle to overwatch element
sensors.

(e) When crossing the boundary between
live and virtual (or engaging real targets
that cannot be seen) the orientation of
the real shooter vehicle with respect to
the world becomes important. This
situation requires solving the problem of
measuring accurately not only the
position of the shooter and target
vehicles, but also the pointing angle in
world coordinates of the shooter's gun.

(f) In the real world of live-instrumented
vehicles on training ranges, it is not
possible to determine locations and
orientations very well. Geometric pairing
from shooter to target is determined
using geometry, namely the locations of
the vehicles, the pointing angle of the
shooter’s gun and the line from shooter
outward toward the target.

1. ESS in support of multi-echelon
combined arms (collective) training
conducted at our Combat Training
Centers requires an additional set of
enabling technologies. (The fact that
multiple players are participating
means communication links become
pacing items for successful
execution). These technologies
include:

a. Digitized terrain database

b. Optimal live/virtual registration
(Geometric pairing combined with GPS,
vehicle attitude and gun orientation)

c. Synchronized SAF
d. Increased communications bandwidth /

reduced commo / distributed processing
e. Automated vehicle / smart models
f. Communications / sensor surrogates
g. Intelligent tutoring system
h. Automated battlefield information filtering

tool
i. Scenario builder / modification tool

(a) High resolution digitized terrain
databases are essential for any live-
virtual exercise. Resolution must be to
Digital Terrain Elevatoin Data (DTED)
level 4 with horizontal resolution at 5
meters and vertical resolution at 1.5
meters or less. All databases should be
standardized & interoperable or
compliant with Synthetic Environment
Data Representation & Interchange
Specification (SEDRIS) conversion
mechanisms.

(b) Implementation of geo-pairing for direct
fire and non line-of-sight engagement
simulation is base upon accurate GPS
position location measurements and
accurate GPS-based turret angle
measurements (shooter-target pairing
and accurate visual representation of live
vehicles in the virtual world).

(c) Synchronized SAF or the Collective
Observation of a Common Entity (SAF) is
designed to synchronize the SAFs
generated on each player platform. For
example, in a platoon exercise all tanks
will see exactly the same view of the
Opposing Force (OPFOR) as they move
or as they are attrited by platoon direct
fire. The advantage of synchronizing is
the reduction of update communications
traffic between friendly players as actions
take place affecting the status of the SAF
entities. The technology involves the
modeling of the SAF entity at a high level
(in terms of behaviors) so that only
infrequent updates to the model are
required.

(d) ESS has more stringent commo
requirements than any stand-alone
system. These requirements include
weight, volume, range, power, and
bandwidth management. With multiple
players in the simulation exercise they

must be constantly reporting current state
(a few updates per second at a minimum)
and interaction information to ensure
proper representation. The use of ultra
wideband (UWB) technology shows
promise with handling the high data
bandwidth load. It uses less power for
given range, has urban environment
capability and a low probability of
detection & interception. This UWB
technology also has the potential for the
longer term “go to war” tactical internet
communications requirements.

(e) By accurately modeling the behavior of a
human player, each live or virtual entity
can use this behavior model to predict
the state of other live entities on the
battlefield; and thus reduce the commo
bandwidth required to update operational
and status information exchange
between all entities. The optimization of
model information can be using on-board
computational resources (simulation
computer and vehicle modeling SW).

(f) Communication and real-time sensor
surrogates will employ UWB technology.
UWB has the capability to be used as
precision radar with the inherent benefits
as a communication system. Use of this
capability in an imaging array can provide
an electronic video camera and provide a
more accurate live/virtual vehicle
registration; as well as providing terrain
database updates that were not present
when the database was produced and
thus avoiding costly high resolution
database generation.

(g) A SW application connected into the
simulation computer system will be an
embedded intelligent training system.
The SW will duplicate as closely as
possible the trainee undergoing on-the-
job training in a crew position task
environment without benefit of a human
instructor. Students can train in an
interactive environment towards a
particular goal or task that will include
challenging training scenarios, monitoring
& evaluation of the trainee actions,
meaningful feedback comments to errors
and response to trainee requests for
information.

(h) A SW application connected to the
simulation computer system will be
designed to process tactical information
and/or use intelligent agents to filter out

extraneous information not readily
needed by the commander. This system
will automate the collection &
dissemination of critical information
automatically allowing rapid decision-
making. This system will prevent
information overload by eliminating non-
essential information, reducing
communications bandwidth, and
uncluttering the commander’s display.

(i) The TRADOC community will provide a
standard library of ARTEP scenarios and
the units will have the capability to
develop their own scenarios or modify
existing ones to meet METL
requirements. This technology will be
located at battalion staff level and
interfaced to the automated Battle
Planning System (BPS).

5. Go-To- War Operational Enhancements:
ESS in support of operational enhancements
makes the technology more affordable than a
single training enhancement system. An
expanded discussion of ES uses for the AAN
can be found in reference 2.

a. Situational awareness
b. Battlefield visualization
c. Mission planning/rehearsal
d. Course of action analysis
e. Critical decision making.
f. Command & Control (staff uses)
g. Information overload reduction (Info

Filtering Tool)

(a) Situational Awareness (SA) can be
enhanced by an ESS. The rapid
processing and sharing of enemy and
friendly location information in a
structured format can assist the
commander with making timely
decisions. ESS can be used to automate
the Tactical Decision Making Process
(TDMP) because the computer can
collect and compile essential enemy
information and filter out non-essential
information and display as either a 2D or
3D view. The simulation computer can
compare old and new enemy situational
templates to predict possible enemy
actions or intentions. As the enemy
closes the computer can display on
screen weapon range arcs to alert the
crews of their vulnerability to enemy
direct or indirect fire. SA will not be

degraded by extended distances
because UWB technology has the multi-
path over the horizon connectivity which
can use every vehicle as a store-and -
forward relay platform and by operations
in a built-up area because UAB is
immune to signal interference caused by
man-made structures.

(b) Tactical information from the various
ground and airborne sensor systems can
be ported into the battalion Tactical
Operations Center (TOC) for use by the
commander and staff to make timely
decisions. If necessary this information
can be displayed on every vehicle tactical
display instantaneously to give every
crew a clear picture of enemy action. The
rapid graphic display of enemy info like a
Family of Scatterable Mines (FASCAM)
minefield becomes a powerful tool that
can save time and lives. Operations
orders and graphics can be transmitted
electronically and thereby reducing
report preparation and distribution times.

(c) Mission planning and rehearsal can be
realistically accomplished by conducting
a virtual reconnaissance of the battle
area or a virtual look back at the
defensive position, and a virtual
rehearsing against a GGF on the same
terrain database and using similar light &
environmental conditions. Electronic
planning and stealth reconnaissance will
maximize the use of planning time and
minimize exposure to enemy observation
and fire. Because of the inherent
covertness of UWB technology, critical
information can be passed freely during
both planning and rehearsal phases.
Stetliminating some of the unknowns and
reinforcing proper execution while
rehearsing enemy “what if” situations.
The concept of “Perfect practice makes
for perfect execution” would enhance
crew confidence.

(d) Developing the best course of action can
be made easier by running the various
Blue courses of action virtually against
the Red courses of action. Quick
simulations can be run to determine
possible results of the various courses of
action. The commander can make his
final decision based upon the result of
the computer comparative analysis and
risks involved.

(e) An ESS can automate the collection &
dissemination of key information (SA)
automatically, thereby allowing rapid
decision making based upon the most
recent information available and models
of enemy tactics, techniques, procedures
and order of battle information. Using the
ESS to reduce the commander’s
information processing duties can abate
the stresses of combat decision making.
ESS contributes to digitization as a force
multiplier.

(f) Command, control and communication
will be expedited and improved by using
the on-board processing capacity, smart
models, intelligent agents, covert
digitized communications, and the real
time display of enemy and friendly
activity / status. Graphical displays vice
verbal transmission of critical information
will save time and standardize
information exchange. Commanders and
staffs can overwatch unit personnel &
logistical status and anticipate support
requirements.

(g) ES can be used to perform as an
intelligent agent to filter out extraneous
information and provide non-redundant
transmission of information that is crucial
to decision making. The resultant filtered
output to the human decision-maker will
permit faster and more accurate
decisions and prevent information
overload and display clutter. The system
can be embedded into the Advanced
Tactical Command & Control System
(ATCCS) and the display tailored to show
information the commander considers
critical to his decision making process.

Embedded System (ES)
Architecture

a. Three architecture approaches are
 currently being studied.

(1) A completely separate stand-alone ES
subsystem with its own processing
image generator and SW. Advantages
would be utilizing off-the-shelf and
ruggedized HW, lower cost, use of state
of the art graphics cards and processors
and least interference with actual vehicle
HW & SW. Disadvantage is the need for
additional space requirements.

(2) Fully embed ES into the vehicle
subsystems by adding or upgrading the
vehicle’s own computer and SW
architecture to accommodate the
additional requirements to support ES.
Advantages would be not requiring any
extra space and use of the current video
interface. Disadvantage is that new
components would have to be militarized
and integrated with the existing system
and the associated costs.

(3) A hybrid or combination of 1 and 2. In
this approach the idea would be to find
the optimal approach that utilizes as
much of the vehicle computer and
networking capability, but anything new
or to costly to militarize is put in a
separate subsystem. The disadvantage
of this approach is that it will still require
extra space.

b. Stet the final decision to implement an
architecture approach will be made at a later
time. Hardware and software architecture for
ESS must be done in a away that will allow
for seamless integration in any potential
vehicle platform. This will require emphasis
on architecture interfaces (HW & SW) that
can be fully embedded into the vehicle
architecture design. Computer technology
and graphic systems are improveing at such
a rapid rate that the ES architecture must be
designed in a way to reduce upgrade costs.
ESS will be developed under an architecture-
based approach that will emphasize loosely
coupled interfaces and maximum use of
commercial standards and software
Application Programming Interfaces (APIs). .
We can show with the below ES Technical
Reference Model the interrelationship
between the HW & SW needed for a fully
ESS. Future vehicles will be designed with
ES as part of the vehicle architecture.

c. ES Technical Reference Model

Conclusion

The enabling technologies associated with INVEST-
STO are a significant first step to meet the training
and operational challenges needed to support the
Army After Next (AAN). The force projection army of
the next century will have the benefit of an
autonomous training system and dual use ESS
capable of providing improved SA and other
operational enhancements. This capability will give
new meaning to the “train as you fight” imperative.
Intelligent tutoring systems and a robust on-bpard
training support package will ensure that the crews
attain and sustain proficiency advantages over any
adversary. The mental agility and information
dominance gained through Force XXI will spawn the
technology enablers that will make an ESS a key
component of combat and training readiness in all
future crew and command & control systems.
INVEST-STO is at the leading edge of these future
operational and training capabilities .

• Embedded Mission Rehearsal
• Embedded Training
• Battlefield Visualization
• Command Coordination
• Virtual Test & Evaluation
• Simulation Based Acqusition
• 3D Mission Visualization
• Stealth / Virtual Recon

Embedded Simulation
Technical Reference Model

Application
Software

Support
Software

System
Software

Mission
Rehearsal

Command
Coordination

Battlefield
Visualization

Process
Communications

World
Models

Entity
Communications

CGF

Device
Drivers

Operating
System

Main
Memory

Processor
Mass

Memory

IGs

Vehicle
Models

Power
Bus

Audio
Databus

Video
Databus

Internal
Databus

Motherboard

Embedded
Training

Vehicle
External

Communications
User

Internal
Communications

External User
Interface w/HW

Tng/Opn
Mission:

Application 1 Application 2 Application 3 Application n

• Vehicle Simulation Mode (i.e.
weapons, mobility, ...)

• Virtual World/Virtual Target Injection

• Mission Planning/Scenario Generation
System

• Terrain Database Generation System

• Stealth/Flying Carpet Mode

• Automated Exercise Manager

• After Action Review/Replay System

• Vehicle to Vehicle Simulation
Communication Architecture

• Entity Generation System (i.e.
ModSAF)

Significant Capabilities

Functional Drivers

Simulation
Computer Sys
Hardware

Computer
Support
Hardware

Figure 2

REFERENCES

1. Bahr, H., Abate C. and Collins J.,
“Embedded Simulation for Army Ground
Combat Vehicles,”

19th I/ITSEC Conference Proceedings,
December 1997

2. Abate,C., Bahr, H. and Brabbs,J.,
Embedded Simulation for the Army After
Next,
Armor, July-August 1998.

Hubert A. Bahr is a Decorated Vietnam Veteran
with 28 years of Federal Service. He received his
BS degree in engineering from the University of
Oklahoma in 1972 and his Masters Degree in
computer engineering from the University of
Central Florida in 1994. For the past 18 years he
has been involved with instrumented Force on
Force Ranges. He is currently the lead engineer
for the INVEST STO in the Research and
Engineering Directorate of STRICOM. His
research interests are in the areas of parallel
processing, artificial intelligence, and computer
architecture. He is also pursuing his Ph.D. at the
University of Central Florida.

Claude W. Abate is a Senior Military Analyst for
Sherikon, Inc. and is currently supporting the
Simulation Technology Division, Research and
Engineering Directorate of STRICOM. He is a
graduate of Florida Southern College and has a
Masters of Science Degree from Florida State
University. Prior to joining Sherikon, Mr. Abate
was a career Army officer with a variety of
command and staff assignments in the US and
overseas. As a retired Colonel, his experience
includes a perspective as a training and doctrine
developer and Training Brigade Commander at
the US Army Armor Center and School and as an
opposing force commander at the National
Training Center. He has two years experience
working with PM CATT on the Close Combat
Tactical Trainer and is currently the project
coordinator for INVEST-STO. His military
schooling includes the Command and General
Staff College and the Army War College.

DEVELOPING SYNCHRONIZED PLAYER MODELS
FOR EMBEDDED TRAINING

Vanna McHale and Wesley Braudaway Ph.D.
Science Applications International Corporation (SAIC)

Orlando, Florida

Abstract
The Synchronized Player Models (SPM) project supports the U.S. Army Inter-Vehicle Embedded
Simulation Technology (INVEST) Science & Technology Objective (STO) Program [1]. The overall goal
of the SPM project is to reduce the network bandwidth required to maintain synchronization between a
Live vehicle, a Modular Semi-Automated Forces (ModSAF) player model simulation and its associated
clone models in separate simulation environments. The SPM project conducted a series of experiments
in order to determine the feasibility of the SPM objective. The first experiment, reported in this paper,
focused on the ability to have computer-generated forces operate identically in separate simulation
environments without requiring network communication. To obtain this level of synchronization it is
necessary to have a repeatable ModSAF that provides simulation events (e.g., vehicle location events,
firing events, damage events) that occur at the same simulation time in each run of the same scenario.

This paper discusses the use of repeatability to support synchronized embedded simulation and focuses
on the modifications required to produce a deterministic, repeatable ModSAF. Experiments were
conducted to test and demonstrate the repeatable ModSAF and are illustrated in this paper. These
ModSAF modifications, that were developed in support of SPM, were the basis for developing the
repeatability mode currently supported in the ModSAF version 4.0 baseline.

Authors Biography
Vanna McHale is a member of the Advanced Simulation Research Team within SAIC’s Orlando
Operation and a scientist on the Synchronized Player Models project. Ms. McHale received her B.S. in
Computer Science from the University of West Florida and has been actively involved in the M&S
community since 1992.

Wesley Braudaway, Ph.D. is a member and technical lead of the Advanced Simulation Research Team
within SAIC Orlando’s Operation. Dr. Braudaway was the Principal Investigator for the Synchronized
Player Models project. He was also the System Architect for CCTT SAF and has been involved in
several Computer Generated Forces related research and development projects. Dr. Braudaway
received his Ph.D. from Rutgers University’s Computer Science Department and has been actively
involved in the M&S community since 1991.

DEVELOPING SYNCHRONIZED PLAYER MODELS FOR EMBEDDED
TRAINING

Vanna McHale and Wesley Braudaway Ph.D.
Science Applications International Corporation (SAIC)

Orlando, Florida

1. INTRODUCTION

Simulation technology advances can be leveraged
into a form suitable for embedding into ground
vehicles for training, mission planning, and other
operational uses. Embedded Training (ET) is a
capability designed into or added onto operational
hardware and software systems that enables it to
provide the simulation cues necessary to train
crewmembers. This on-board technology will
allow mission rehearsal and sustainment training
to occur whether the soldiers are at home stations
or deployed.

As part of this simulation environment, collective
operation requires the synchronization of multiple
embedded simulations. Using today’s distributed
interactive simulation technology, the volume of
data transfer required to support embedded
training at the unit and battalion level is a
significant obstacle because of the network and
communication limitations of the fielded systems.
Typically, the fielded systems rely on wireless
communication, which provide very low bandwidth
for simulation use. The Simulation, Training and
Instrumentation Command (STRICOM) is
conducting the Inter-Vehicle Embedded Simulation
Technology (INVEST) Science and Technology
Objective (STO) to address the technologies
required to provide this ET capability [1].

Providing deterministic Computer Generated
Forces (CGF) as part of the simulation
environment solves part of the ET problem by
removing the need for communication to
synchronize the computer-generated models.
Suppose each simulation environment has its own
deterministic CGF to simulate all computer-
generated models. The simulation environments
will produce exactly the same simulation event
sequence for the same scenario without requiring
any coordination. If the input to these CGFs is
synchronized then there is no need to synchronize

the computer-generated parts of the simulation
environments as done today using the Distributed
Interactive Simulation (DIS) protocol.

The SPM project chose as its simulation platform
the Modular Semi-Automated Forces (ModSAF)
system. This paper describes the necessary
modifications to implement a deterministic or
repeatable ModSAF. This paper is organized to
describe the synchronization challenge for
embedded simulation, the solution to
synchronization using a repeatable CGF, the effort
required to make ModSAF repeatable, and the
remaining effort required to complete the
synchronization of multiple embedded simulations.

2. PROBLEM DEFINITION

The INVEST objective is to provide a simulation
environment for both individual vehicle operations
and multiple vehicles that interoperate within a
collective simulation. In the collective mode, the
simulation environments (one for each live vehicle)
must be synchronized to present an identical
synthetic situation to each vehicle concurrently.

There are two types of synchronization required
for this modeling (see Figure 1).

Simulation
Environment
for Live
Vehicle A

Simulation
Environment
for Live
Vehicle B

Synch2

Synch1

Vehicle A Vehicle B

Figure 1: SPM Synchronization

This first synchronization activity occurs between
the live Vehicle A and its simulation environment.
The interaction of the vehicle and its simulation
environment is achieved by a direct coupling of the
vehicle’s vision blocks and controls to the
simulation environment. A virtual model in the
simulation environment representing the live
vehicle, called the player model, replicates the
behaviors of an actual vehicle under the command
and control of its crew. Any interaction between
the live vehicle and simulated entities is achieved
as a side effect of the interaction between the
player model for the vehicle and the simulated
entities within the simulation environment.

The second synchronization occurs between
Vehicle A’s simulation environment and Vehicle
B’s simulation environment. Contained in the
simulation environment are CGF (vehicles, units,
munitions, etc.) and a player model representing
each live vehicle participating in the collective
simulation. The synchronization activity makes
each environment identical as defined by state
data and events affecting each virtual entity
regardless of whether they are computer-
generated or player models. For example, in
addition to replicating live vehicle A’s simulation
environment, a “clone” of that player model must
exist within vehicle B’s simulation environment that
replicates that same behavior. This
synchronization is implemented today using the
DIS protocol and communication channels
requiring very high bandwidths. However, in
meeting the objectives of INVEST STO, high
bandwidth and physical connectivity are not
feasible alternatives.

3. SYNCHRONIZATION THROUGH
REPEATABILITY

The CGF of an embedded simulation can be
synchronized by ensuring that each simulation
environment is started at the same time and that
the computer-generated models process the same
events with respect to time in each simulation
environment. Assuming that all other aspects of
the simulation environments are synchronized,
synchronization of the computer-generated
models is achieved using a repeatable
implementation of the CGF in each environment.
Each CGF replicates the exact simulation of all
computer-generated models in each simulation
environment.

A CGF implementation is repeatable if the
simulation events (e.g., vehicle location events,
firing events, damage events) occur at the same
simulation time in each run of the same scenario
(where “scenario” is defined as a set of initial
conditions and external events). By satisfying this
requirement, the CGF implementation within each
embedded simulation environment will result in a
synchronized simulation environment as long as
the initial conditions are the same, the simulation
time is synchronized and the external events are
synchronized. No additional communication will
be necessary to synchronize the CGF models in
each simulation environment.

4. IMPLEMENTING ModSAF
REPEATABILITY

Although CGF implementations, such as ModSAF,
are not typically designed to be repeatable, they
can be modified to provide a repeatable mode of
execution. Repeatability can be achieved by
modifying the scheduling of simulation events, the
generation of stochastic events, and the
elimination or control of distributed events.

4.1 Event Scheduling

Many CGF implementations, including ModSAF,
are event simulations that are managed to ensure
a perceived real-time performance. They are
designed to emulate a real vehicle by
implementing a model that performs as close to
the vehicle’s actual real-time performance as
possible.

A model’s behavior is implemented as discrete
event changes maintained in an event queue,
such as changing its location over time, firing
weapons, or taking damage. Each event in the
queue is executed relative to a simulation time that
is also updated periodically with respect to real-
time. An attempt is made to maintain a simulation
time equivalent to real-time so that the model’s
performance appears to correctly emulate an
actual vehicle’s real-time performance. This
differs slightly from discrete event simulations
where events in the queue are executed at an
explicit, predetermined simulation time.

While the generation and execution of simulation
events are deterministic and repeatable, the
synchronization of simulation time to real-time is

not repeatable. As the operating system interrupts
the simulation to make system service calls at
different times and for different periods from
simulation run to simulation run, the execution of
events with respect to real-time (relative to the
start of the simulation) will also vary. Because the
discrete events are a sampling of continuous real-
time and therefore an approximation of real-time,
the outcome of an event may vary if a different
sampling occurs between the runs. For example,
consider the same movement event for a vehicle
in two different simulation runs (as shown in
Figure 2).

Move
Event T1

Move
Event T2

Simulation Run (SR1) Simulation Run (SR2)

Figure 2: Same Discrete Event in different SRs

Because real-time advanced further in SR2
(possibly due to a longer system interrupt), the
vehicle traveled farther during this event in SR2
than in SR1 in order to maintain the real-time
approximation. Suppose that this update in both
runs placed the vehicle within line of sight of an
opposing vehicle and that opposing vehicle
reacted immediately by firing its weapon.
Because this observation and reaction occurred at
different simulation times within the two simulation
runs, the executions are no longer identical (i.e.,
not repeated).

Because of the great dependency between
events, as a single event between the simulation
runs diverges with respect to time, the differences
between the runs will cascade until there are
significant variations in the simulation outcomes of
each.

To provide a repeatable mode for ModSAF, its
event scheduling mechanism was modified.
These modifications included changes to the clock
and scheduler implementations, and the
scheduling of behavior models.

4.1.1 Clock Implementation

To support real-time simulation, the ModSAF real-
time clock and its simulation clock were tightly
interconnected. As stated earlier, when running in
a real-time mode, the simulation clock is
dependent on the real-time clock and is advanced
with respect to the real-time clock. However, what
was unusual about the ModSAF implementation
was that the procedure to advance the simulation
clock also always advanced the real-time clock.
The ModSAF clock implementation was modified
to remove this reverse dependency.

In ModSAF’s repeatable mode, ModSAF’s real-
time clock continues to be based upon the system
clock. However, the simulation clock was modified
to advance to the next event’s time on the event
queue after processing each event. The
continuous frame update rate for the simulation
clock was disabled, essentially severing the
simulation clock to real-time clock dependency.

4.1.2 Scheduler Implementation

A thorough review of the ModSAF scheduler was
conducted to determine areas resulting in random
scheduling and/or invoking of events and function
calls. ModSAF’s scheduler implements four
queues: a high priority real-time queue, a periodic
real-time queue, a deferred real-time queue, and a
simulation time queue. All four queues utilize the
real-time clock to invoke events on the queues.
The simulation queue implementation was altered
to be event driven and based upon the simulation
clock rather than the real-time clock to produce a
repeatable ModSAF mode. Therefore, when a
simulation queue’s event is invoked in this mode,
the simulation clock is advanced to the time of the
next event on the simulation queue.

4.1.3 Scheduling Behavior Models

To utilize the modified, event-driven simulation
clock, the scheduling of behavior and physical
model update functions was moved from the real-
time queue to the simulation queue. All non-
simulation functions such as user interface and
network functions remained on the real-time
queues.

The simulation processing of each vehicle occurs
in that vehicle’s “tick” or update function. All
vehicle events are generated as part of this tick

and therefore, have the biggest influence on
repeatable performance. Moving this function and
its associated unit behaviors to the simulation
queue will provide the required ModSAF
repeatability by removing them from the influences
of the real-time clock. No other modification to the
models or the modeling architecture was required.

4.2 Stochastic Events

Many CGF systems, including ModSAF, include
an implementation of stochastic events. For
example, given a vehicle is hit by munitions, it may
lose its ability to move, it may lose its ability to
shoot, or it may be totally destroyed depending of
some statistical representation of the chances for
each alternative. These events are implemented
using algorithms that are based on a number
taken from a random number sequence. A
repeatable random number sequence is easily
implemented by using the same random number
seed between simulation runs.

ModSAF’s random number seed was not
initialized in one central location and was
corrected as part of this effort. ModSAF was
modified to provide initialization within the random
number generator library to provide a constant
random number seed for ModSAF’s repeatable
mode.

4.3 Distributed Events

The distribution of simulation events on a network
also impacts repeatability since it is difficult to
guarantee the execution time of delivered events
between simulation executions. This is due to
network latency, variable order of network
packets, and the variability in times at which the
operating system services its network operations.
A repeatable CGF could be achieved either by not
allowing distributed simulation events or by
explicitly controlling the network events.
Controlled network events can be achieved using
a reliable network mechanism and some reliable
time management capability that alleviates the
problem of network latency and system network
management.

In ModSAF’s repeatable mode, this problem is
avoided by only providing repeatability in a non-
networked mode.

5. MODSAF REPEATABILITY EXPERIMENT

ModSAF’s repeatability was confirmed by
experimentation with several scenarios to
demonstrate that ModSAF’s repeatable mode
generates a duplicate simulation outcome for the
same scenario. For a particular scenario, two
separate ModSAF executions were run to collect
data. The data was collected to confirm that
identical location update, fire, and damage events
occurred at exactly the same simulation time in
successive runs. Several other scenarios were
used to determine the success of the repeatable
ModSAF implementation relative to a variety of
behaviors. Data collection and analysis was
performed for the following areas:

Scheduler Analysis to determine which function
calls were placed on the scheduler, the number of
calls made to the functions, and the cumulative
processing time.

Queue Scheduling to identify the function
scheduling sequence for the deferred, periodic and
high priority real-time queues and scheduled
simulation time queue.

Random Number Generator to analyze the
random number generator activity, to determine its
calling functions and to determine the calling event
simulation time.

Vehicle Specific Data to gather the vehicle’s
position (x and y coordinates) and to obtain its
damage assessment with respect to simulation
time.

Using this data collection, graphs were created to
represent and assess ModSAF’s repeatable
performance. The first graph (see Figure 3)
compares the position variation for the same
vehicle between two runs of the non-repeatable
ModSAF. Position variation is defined as the
distance between two instances of the same
vehicle at the same simulation times between the
two runs of the same scenario. This graph shows
the cascading effect of event differences over time
between two runs.

Figure 3: Vehicle Location Difference, Non-
Repeatable

The second graph (see Figure 4) shows the same
change in position for the same vehicle from one
run to another using ModSAF’s repeatable mode.
This graph illustrates that the vehicle’s position
throughout the entire scenario remains consistent
from run to run (i.e, the distance between the
vehicles instances within each run is always zero).

Ticks

Figure 4: Vehicle Location Difference, Repeatable

In addition to location data, damage assessment
data was also analyzed to determine repeatability
of fire and detonation events and overall vehicle
damage. The third graph (see Figure 5) shows the
damage assessment data collected for all eleven
vehicles within the scenario. Each run is illustrated
as a separate series to show that within the non-
repeatable ModSAF, no two events happen in the
same manner at the same simulation time (time
events in the graph).

Figure 5: ModSAF Damage Assessment, Non-
Repeatable

The final graph (see Figure 6) represents the
damage assessment data using the ModSAF
repeatable mode. In this figure, the two runs are
individually graphed, showing that run 1 is entirely
overlaid with the data from run 2. This illustrates
that over the entire scenario, all vehicles received
the same damage at the same scenario time, from
one run to another.

Figure 6: ModSAF Damage Assessment,
Repeatable

Numerous other scenarios were executed to test
the robustness of the ModSAF repeatability mode.
These scenarios incorporated a variety of
additional behaviors and obstacles. In each case
data collected about the simulation events was
consistent from one run to the other, ensuring that
repeatability was attained within ModSAF.

6. FURTHER SPM EFFORT

The remaining SPM project goals [2] address the
synchronization between a live vehicle and its
player model, and the communication of behavior
control updates. Current SPM activities are

focusing on continued experimentation to refine
the understanding of the player model control
interface, behavior parameterization, and overall
bandwidth issues. Additional experiments are
being developed to investigate the capability to
synchronize the simulated models using the state
changes of vehicle behavior parameters rather
than vehicle location updates. It is believed that
this method of synchronization combined with a
repeatable CGF will substantially reduce the
bandwidth required to synchronize a distributed
simulation of player models.

In future phases, additional experiments will be
performed to identify and implement the control
between ModSAF and the behavior control
interface based upon the INVEST STO operations
identified by the INVEST Architecture Working
Group.

The ongoing SPM experimentation will also
consider alternative behavior control strategies
within ModSAF to control the synchronization of
player model and its associated clone models.

The results of current and future experiments will
influence the final SPM architecture and
implementation. It is intended that the SPM
prototype will be integrated into a developed ET
architecture whose objective is to demonstrate the
viability of the embedded simulation approach.

7. CONCLUSIONS

The objective of the SPM architecture is to provide
Computer Generated Forces that will interact with
live vehicles through use of a player/clone
model approach. This objective must be achieved
while using a lower bandwidth than the current
DIS protocol approach for implementing simulation
environment synchronization. To achieve this
objective, it is believed that dead reckoning at the
behavior abstraction level and reducing the
requirement for communication to achieve
synchronization will reduce the bandwidth [2].

Through the use of a repeatable CGF, SPM
achieves synchronization of the computer-
generated models in different simulation
environments without resorting to DIS protocol.
This approach assumes that the scenario (inputs
and distributed events) implemented in each
environment is synchronized. A repeatable CGF
is achieved by scheduling the simulation events
independent of real-time, generating stochastic
events from a fixed random number sequence,
and either eliminating or control the processing of
distributed events. The results of this effort were
fully integrated into ModSAF version 4.0 to provide
a ModSAF with a repeatable mode.

8. ACKNOWLEDGEMENT

The authors would like to acknowledge the efforts
of Deanna Nocera, Gene McCulley and Eddie
Cason for their contribution to this analysis and
repeatable ModSAF development.

The authors would also like to acknowledge the
efforts of Derrick Franceschini and Gene McCulley
of the Advanced Distributed Simulation
Technology (ADST - II) program for their complete
integration and testing of the repeatable mode into
the Army’s ModSAF version 4.0 baseline.

The work presented in this paper was sponsored
by STRICOM under contract N61339-97-C-0040.

9. REFERENCES

[1] Bahr, H.A., “Embedded Simulation for Ground
Vehicles,” Spring 97 Simulation
Interoperability Standards Workshop
Proceedings, Institute for Simulation &
Training, Orlando, FL, March 1997.

[2] Braudaway, W., and Nocera, D.L.,
“Synchronized Player Models for Embedded
Training,” Spring 98 Simulation Interoperability
Standards Workshop Proceedings, Institute
for Simulation & Training, Orlando, FL, March
1998.

BEHAVIOR MODELING FRAMEWORK FOR EMBEDDED SIMULATION

Amy Henninger, William Gerber, Ronald DeMara, Michael Georgiopoulos, and Avelino Gonzalez
University of Central Florida

Orlando, FL.

ABSTRACT

Although embedded training has become the preferred approach for training military forces, it is
surrounded by a variety of technical challenges. The Inter-Vehicle Embedded Science and Technology
(INVEST) Science and Technology Objective (STO) program explores technologies required to embed
simulation in combat vehicles. One of these requirements is to provide a simulation environment in which
computer generated forces, manned simulators, and live vehicles may interact in real-time. Unfortunately,
providing this geographically distributed and untethered real-time interaction is severely limited by the
communications requirements imposed by the need to convey large amounts of data between the
respective players. By extending the concept of Distributed Interactive Simulation (DIS) dead-reckoning,
a vehicle movement method, to the behavioral level, this limitation may be mitigated. The Vehicle Model
Generation and Optimization for Embedded Simulation (VMGOES) project at the University of Central
Florida is focusing on this aspect of the INVEST program. This paper presents the specifications and
development process of VMGOES.

ABOUT THE AUTHORS

Amy Henninger is a doctoral candidate in computer engineering at the University of Central Florida, a
Research Fellow at U.S. Army STRICOM, and a recipient of the Ninth Annual I/ITSEC Scholarship. She
has earned B.S. degrees in Psychology, Industrial Engineering, and Mathematics from Southern Illinois
University, an M.S. in Engineering Management from Florida Institute of Technology, and an M.S. in
Computer Engineering from UCF.

William Gerber, Lt. Col., U.S.A.F. (Ret.), is a Ph.D. student in computer engineering at the University of
Central Florida and a Research Fellow at U.S. Army STRICOM. He has a B.S.E.S. degree in
Astronautics and Engineering Sciences from the U.S.A.F. Academy, an M.S.E. in Nuclear Engineering
from the University of California at Los Angeles and an M.S.Cp.E. in Knowledge-Based Systems from
UCF.

Ronald DeMara is a full-time faculty member in the Electrical and Computer Engineering Department at
the University of Central Florida. Dr. DeMara received the B.S.E.E.. degree from Lehigh University in
1987, the M.S.E.E. degree from the University of Maryland, College Park in 1989, and the Ph.D. degree
in Computer Engineering from the University of Southern California, Los Angeles in 1992.

Michael Georgiopoulos is an Associate Professor at the Department of Electrical and Computer
Engineering of the UCF. His research interests lie in the areas of neural networks, fuzzy logic and
genetic algorithms and the applications of these technologies in cognitive modeling, signal processing
and electromagnetics. He has published over a hundred papers in scientific journals and conferences.

Avelino Gonzalez received his bachelor’s and master’s degrees in Electrical Engineering from the
University of Miami, in 1973 and 1974, respectively. He obtained his Ph.D. degree from the University of
Pittsburg in 1979, also in Electrical Engineering. He is currently a professor in the Electrical and
Computer Engineering Department at UCF, specializing in human behavior representation.

BEHAVIOR MODELING FRAMEWORK FOR EMBEDDED SIMULATION

Amy Henninger, William Gerber, Ronald DeMara, Michael Georgiopoulos, and Avelino Gonzalez
University of Central Florida

Orlando, Florida

INTRODUCTION

The combination of computer simulation and
networking technologies has provided the U.S.
military forces with an effective means of training
through the use of Distributed Interactive
Simulation (DIS). DIS is an architecture for
building large-scale simulation models from a set
of independent simulator nodes (Smith, 1992) that
represent one or more entities in the battlefield
simulation. By communicating over a network via
a common protocol, these entities are able to exist
simultaneously and interact meaningfully in the
same virtual environment. Currently, however, the
ability of live vehicles to interact with these
simulated forces in the virtual world is constrained
by the communication requirements needed for
real-time interoperability. Eliminating or reducing
this impediment would enhance military training in
a number of ways. For example, it would
diminish the costs associated with having live
vehicles travel to maneuver ranges for live
exercises. Also, by shifting more of the training to
operational units, it would reduce the costs
associated with the training schools. In essence,
the military could rely less on formal school-house
training, more on deployable training systems, and
fundamentally make training more readily available
on an “as-needed” basis.

To accomplish these objectives, the Department
of Defense has recently initiated an effort to
determine how embedded training and advanced
simulation technologies could be used to
overcome the obstacles surrounding this
technology. One problem, for instance, is that in
order for a driver of a live vehicle to train in a
virtual domain, he must be able to traverse the
artificial/virtual terrain. Correspondingly, he must
be able to see the other live and virtual entities on
the virtual battlefield and interact with them in real
time. To accomplish this, the embedded training
systems must sustain the transfer of massive
volumes of data. Unfortunately, the networking
and communications limitations of currently fielded

systems make the transfer of this data using
current DIS supported techniques a strenuous
task.

Current forms of DIS dead-reckoning are viewed
as vehicle movement methods that are used to
reduce DIS packet traffic. By communicating a
given vehicle’s location, velocity and acceleration
to other DIS simulators, the models residing on
these simulators can predict the unperturbed near
term physical location of the vehicle. In the event
that this vehicle begins to deviate from its
predicted path, the simulator responsible for
creating the entity will send out an update of the
vehicle’s true location to the other simulators.
Thus, the predictive utility of the dead-reckoning
model is pivotal to the success of network traffic
minimization.

The requirement to transfer enormous volumes of
data coupled with the communication limitations of
currently fielded systems makes using currently
existing DIS methods an inadequate approach.
Bahr and DeMara (1996) suggest that extending
the concept of DIS dead reckoning to the
behavioral level may reduce DIS traffic more than
merely applying DIS dead reckoning to vehicle
movement tasks. Figure 1 illustrates the DIS dead
reckoning concept applied to embedded training
and simulation. As indicated by Figure 1, this
concept requires the distributed processing of
multiple vehicle models because every live or
simulated vehicle is represented by a model and
every model is resident on every vehicle. The
vehicle model (VM) serves to predict the actions of
the vehicle it represents. When the actions of the
vehicle are consistent with the actions predicted
by the vehicle’s model, all of the copies of that
vehicle’s model are correctly reflecting the live
vehicle’s actions. In this instance, the interaction
between the other vehicles and the vehicle model
in the virtual world is an accurate representation of
the vehicles’ interactions in the real world.
However, if the actions of the vehicle are not
consistent with the actions predicted by the
vehicle’s model, the copies of that vehicle’s model

are not correctly reflecting the live vehicle’s
actions. In this instance, the interaction between
the other vehicles and the vehicle model is not
consistent with their real world interaction.

As indicated in Figure 1, a system that extends the
DIS dead-reckoning concept to the behavioral
level requires the identification of discrepancies
between the behavior of an actual vehicle and that
vehicle’s model. The portion of this system that
identifies and classifies these discrepancies is
referred to as the Difference Analysis Engine
(DAE) in Figure 1. By comparing the state of the
vehicle model with the state of the actual entity,
the DAE identifies whether discrepancies in the
behavior as well as the position exist. If there are
discrepancies, the DAE determines whether an
update is necessary and what that update should
be. The types of information provided by the DAE
are specified in a future section of this paper.

Figure 1. DIS Dead-Reckoning Approach
Extended to Behavioral Level

This paper offers a framework for the development
of the VM and the DAE. Also, this paper
addresses the integration of the two components
into the full system known as Vehicle Model
Generation and Optimization for Embedded
Simulation (VMGOES).

SCOPE OF MODEL

Frequently, DIS simulations use computer
controlled combatants known as Computer
Generated Forces (CGFs) to populate the
battlefield. The behavior of a CGF may be
generated by a human operator assisted by
software, in which case the class of CGF is
referred to as a semi-automated force (SAF) or
generated completely by software, in which case
the class of CGF is referred to as an autonomous
force (AF). The behaviors generated by CGFs
are based on doctrine and represent a wide
variety of tasks with a reasonable level of detail.
Because these behavioral models are fashioned
entirely by doctrine, they emulate standard
procedures that are acquired from declarative
knowledge (i.e., manuals and interviews) and
provide a range of feasible behavior. However,
these models of behavior provide no
representation for the 1) implicit knowledge or 2)
intrinsic performance characteristics that make
“live entities” unique from one another. For
example, the current CGF behavioral models used
in DIS exercises may simulate the movement of a
vehicle to a given location by some standard
movement model, but they do not “individualize”
that movement method by either assigning or
simulating human performance characteristics
(e.g., tendency to hug the side of the road,
propensity to maintain speed above speed limit,
etc.) to it. Thus, behavioral models fashioned
entirely by doctrine are often characterized as
yielding responses that are “canned”,
"predictable", or “too perfect”. However, the fact
that these behaviors are "canned" or
"preprogrammed" in no way suggests that these
behaviors are simplistic. Prevalent SAF systems
have integrated hundreds of thousands of lines of
code to successfully emulate the command and
control hierarchy of a military unit and its operation
on the battlefield. By providing a variety of
planned behaviors (e.g., "Conduct a Tactical Road

Live Vehicle 1

VM 1

VM 2

DAE1

Vehicle Entity Database

Manned Module 2

DAE2
VM 2

VM 1

CGF

Simulator Entity Database

Real time
actuals

Prediction

Updates

Situational Awareness

Situational Database

•Mission data
•Terrain

Situational Database

•Mission data
•Terrain

Manned Module or Live Vehicle N

VM N

VM 1

CGF

DAEN

Vehicle Entity Database

Real time
actuals

Prediction

Updates

Situational Awareness

Situational Database

•Mission data
•Terrain

...

VM N

CGF

VM N

VM 2

Real time
actualsSituational Awareness

...

...

...

Updates

Prediction

March", "Attack By Fire", "Service Station
Resupply", etc.), situational awareness and
assessment, and reactive behaviors (e.g., "Breach
a Minefield", "Call for Indirect Fire", "Actions on
Contact", etc.), they have successfully provided
suitable friendly and enemy forces to populate the
battlefield.

The models to be used in this project are
conceptually similar to CGF models, but they are
distinguishable by the addition of human
performance characteristics in the model. In other
words, whereas a CGF may emulate the selection
of a vehicle's cover and concealment position,
extending the DIS dead-reckoning concept to the
behavioral level requires the prediction of the
vehicle's actual cover and concealment position.
This necessary increase in detail for the VM
coupled with the research oriented nature of this
project, limits the initial efforts for VMGOES to an
exercise smaller in scope than one may find in a
typical DIS exercise.

The exercise used in VMGOES centers around a
Blufor M1A2 tank platoon or section performing a
Tactical Road March and executing an Actions on
Contact task in response to a potential enemy
threat (i.e., an Opfor T-72 platoon, section, or
vehicle). A variety of control parameters can be
modified by the VMGOES model users. This
allows the users to more fully exercise the model
to evaluate its ability to generalize. These
parameters are categorized in two groups: (1) task
parameters and (2) operational parameters. These
parameters and their permissible ranges are
defined below.

Task parameters that may be changed by the
evaluators are expressed by task. These tasks
include Tactical Road March and tasks related to
Actions on Contact maneuvers.

Tactical Road March Parameters

Tactical Road March parameters that may be
modified include the route and march rate.

Route - may be defined within the constraints of
the assumptions/conditions (listed under
Assumptions section).

March rate - must be defined within the
acceptable limits of the march rates delimited in
simulation.

Actions on Contact Parameters

Rules of engagement is the only parameter that
may be modified to influence this task.
Rules of engagement - may be initialized as
free, tight, or hold to either all or none of the
Blufor M1A2 entities.

Operational Parameters

The following operational parameters may be
changed in a VMGOES exercise:

Terrain - area where scenario is executed within
constraints of the Assumptions section

Blufor Unit Size - tank section or tank platoon

Opfor Unit Size - single vehicle, tank section or
tank platoon, and

Opfor Unit Location - positioning (location and
direction) of Opfor unit

Assumptions

Lastly, the following conditions/assumptions will
apply to the exercises considered by VMGOES:

1. Terrain does not include bodies of water (e.g.,
lakes, rivers, swamps or ponds).

2. Model does not simulate Command
Overrides, Fragmented Orders, or other
externally initiated changes in orders.

3. Opfor (T-72 vehicles) operate according to
defaulted behavior of simulation unless
specified otherwise for a scenario.

4. Blufor units should begin exercise on route,
have heading directed towards end of route,
and be oriented closely parallel to its position
on the route.

5. Manned module always represents the lead
tank (i.e., platoon leader).

6. There will be no modifications to terrain (e.g.,
obstacles or minefields).

7. M1A2 may not initiate calls for support (e.g.,
indirect fire).

8. The section of terrain east of Barstow Road
and west of Hill 720 in the NTC-0101 terrain
database will be used for development and
tests.

9. The simulation's environmental factors (e.g.,
weather, tactical smoke, etc.) will not change
during a scenario.

10. Tactical Road March tasks may only be
assigned to terrain where the road is
observable.

MODELING PARADIGM

To develop the vehicle model, VMGOES is using a
machine learning technique known as Learning by
Observation (Gonzalez, et al, 1998). This
technique facilitates the development of
intelligent, computational models of human
behavior. Although a relatively new concept in the
discipline of machine learning, Learning by
Observation has been successfully used in a
variety of highly complicated, real-world tasks.
Pomerlau (1992), for example, used Learning by
Observation in the development of an
Autonomous Land Vehicle In a Neural Network
(ALVINN). In this project, Pomerlau trained a
neural network to drive a vehicle through a one-
lane road under ideal environmental conditions.
Moreover, this network was able to generalize its
training to perform satisfactorily in two-lane as well
as in dirt roads, and under adverse environmental
conditions (snow, rain, etc.). Expanding on this
work, Pomerlau et al. (1994) have developed
“smart” vehicles as part of Advanced Research
Projects Agency's (ARPA's) Unmanned Ground
Vehicle (UGV) program, intended to reduce the
need for human presence in hazardous situations.
These vehicles are capable of driving themselves
at speed up to 55 mph for distances of over 90
miles on public roads. Moreover, they are capable
of driving both during the day and night, driving on
a variety of roads, avoiding obstacles, and even
performing parallel parking.

With respect to the vehicle models in this project,
Learning by Observation will be used to learn
human decision making skills (e.g., reactive
transitions, route planning, selection of cover and
concealment) and low-level human control
strategies (e.g., route following, scanning, etc.).
Ultimately, these behaviors will be learned through
the observation of a human expert tank
commander. However, as a preparatory step,
VMGOES is currently developing a VM prototype
by learning these behaviors through the
observation of a ModSAF M1A2 entity. In other
words, instead of using a human as the expert
whose behavior is learned, VMGOES is initially
using a ModSAF entity as the “expert” whose
behavior is learned. This prototype model is
referred to as VMModSAF. It is anticipated that this

prototype work will assist in the identification of
technical issues that may arise in the second
phase of the study and ultimately, will increase the
likelihood of successful results in the final system.

VMGOES DEVELOPMENT

In addition to using ModSAF to supply the M1A2
"expert" entity from which VMModSAF will learn, the
ModSAF system is being used to provide the
simulated environment in which the vehicle
models interact. This allows VMGOES researchers
to focus on the development of accurate behavior-
based models as opposed to the implementation
issues pertaining to vehicle simulation (e.g.,
physical modeling, weapons modeling, network
interface, etc). The VM is embedded in ModSAF
and receives input data consistent with sensory
information obtainable from the controls and
display systems resident in an M1A2. The VM
output contains the commands and parameters
needed to control the vehicle's motion and
weapons' execution. The DAE, alternatively, runs
as a separate process and receives input from both
the vehicle model and the (live or simulated)
master vehicle's interface. In both the VMModSAF

and the vehicle model derived from the human
expert (VMMM), this interface supplies sensory
information and dead-reckoning type data
pertinent to the given model's behavior. This is
also true of the interface to the (live or simulated)
master vehicle. Once it receives these inputs, the
DAE identifies whether discrepancies exist
between the vehicle models and the master
vehicle and sends out the necessary updates.
The updates sent out by the DAE contain one or
more of following four types of information: 1)
position, orientation and other basic dead-
reckoning information 2) model parameter
information, 3) behavior enumeration, or 4) action
enumeration. Examples of updates containing
these types of information are provided in the
following section.

Software Engineering Model

As illustrated in Figure 2, VMGOES has adopted
an Incremental Model (Schach, 1993) software
engineering process. Using this type of model,
the product is designed, implemented, integrated,
and tested as a series of thirteen incremental
builds, where each build is represented by a
numbered circle. Also, each build consists of code
pieces that interact together to provide a specific

functional capability. For the most part, the stages
down the left-hand column of Figure 2 represent
the VM builds and the stages across the bottom
two rows represent the DAE builds as they are
integrated with the VM. Of the two rows
representing the DAE builds, the top row
represents the development cycle of VMGOES
using a ModSAF entity as the “expert”, and the
bottom row represents the development cycle of
the VMGOES using the human expert. Finally,
the integration of the two components (VM and
DAE) occurs at the intersection of the column and
rows.

Figure 2. VMGOES Development Model

The thirteen VMGOES model builds presented in
Figure 2 are enumerated and defined below
according to their functional divisions. Builds 1
and 2 can be described as:

1. Train VM1 to replicate reactive behavior
context transitions by observing a ModSAF
M1A2 CGF entity. In this build the reactive
behaviors are enumerated as a part of the
training set.

2. Train VM2 to replicate reactive behavior
context transitions by observing a ModSAF
M1A2 CGF entity. In this build the reactive
behaviors are not enumerated as a part of the
training set.

In both Builds 1 and 2, a ModSAF M1A2 entity
serves as the "expert" from which knowledge is
acquired. Also, both models resulting from these
builds focus on the acquisition of knowledge
pertaining to unit level reactive behaviors. VM1

and VM2 are both trained with data containing

sensory information (input). The difference,
however, is that the output data used to train VM1

includes the reactive behavior enumeration,
whereas the VM2 model does not have access to
this enumeration. As a result, VM2 must
additionally employ some strategy to infer the
reactive behavior type that should be associated
with a given input vector or cluster of vectors.
This second build better reflects the actual task at
hand: to learn behaviors from a human expert. In
other words, since the human expert will not be
verbalizing or enumerating his behavior, the
methodology for developing the final models in this
project must be capable of inferring what that
behavior is. It is anticipated that methods
developed in Build 2 will assist in meeting this
requirement.

Builds 3 and 4 can be described as:

3. Train VMModSAF to replicate context transitions
and actions for VMGOES test scenarios by
observing ModSAF M1A2 CGF entity.

4. Train VMMM to replicate context transitions and
actions for VMGOES test scenarios by
observing a human expert in a M1A2 Manned
Module.

The functionality provided by both Builds 3 and 4
is specific to the VMGOES test scenarios as
defined in the VMGOES Requirements Document.
These are briefly described in the Model Scope
section of this paper. The difference between
Builds 3 and 4 is that Build 3 uses a ModSAF
entity as the "expert", whereas Build 4 uses a
human expert. As previously discussed, it is
anticipated that modeling strategies learned by the
VMGOES team in Build 3 will be useful in the
development of the final vehicle model (VMMM)
developed in Build 4.

Builds 5 and 6 can be described as:

5. Integrate VMModSAF with DAE dead-reckoning
control (DAEDR) to evaluate VMModSAF/DAEDR for
VMGOES test scenarios.

6. Integrate VMMM with DAEDR to evaluate
VMMM/DAEDR for VMGOES test scenarios.

Builds 5 and 6 are simply integration checkpoints
in the development cycle. In both of these builds,
the vehicle models are being integrated with the

VM1

VM2

VMMod/ DAEDR

VMMM / DAEDR

DAECTO

DAECTO

DAEUCTO

DAEUCTO

DAEOLL

DAEOLL

1

2

3

4

5

6

7 8

9

10

11

12

13

Start

End

DAEs' basic dead-reckoning control mechanism.
This will enable the DAE to update the vehicle
model position or orientation with basic dead-
reckoning type parameters, in the event that the
VM has deviated from the path pursued by the
master vehicle.

Builds 7, 8, and 9 can be described as:

7. Train DAE context transition override control
(DAECTO) of VMModSAF to recognize context
transitions for VMGOES test scenarios. In this
build, reactive behavior transitions are
supplied as part of the training set.

8. Train DAECTO of VMModSAF to recognize context
transitions for VMGOES test scenarios. In
this build, reactive behavior transitions are not
supplied as part of the training set.

9. Train DAECTO context transition override
control (DAECTO) of VMMM to recognize context
transitions for VMGOES test scenarios.

In general, these builds focus on the context
transition override control of the DAE. This control
mechanism allows the DAE to update the VM's
enumerated behavior type and is used when the
DAE identifies the behavior/context of the live
vehicle as being different from the behavior
enumerated by the vehicle's model. For example,
if the VM is performing a "Withdraw" and the DAE
determines that the live vehicle is performing an
"Assault", the DAE directs the VM to change its
behavior to an Assault.

Specifically, Builds 7 and 8 are using ModSAF as
the "expert" and Build 9 is using a human in a
manned module as the expert. Additionally, Build
7 and 8, like Builds 1 and 2, are distinguishable
by the availability of behavior enumerations in the
output of the training set.

Builds 10 and 11 can be described as:

10. Train DAE unrecognized context transition
override control (DAEUCTO) of VMModSAF to
recognize unrecognizable context transitions
for VMGOES test scenarios.

11. Train DAEUCTO of VMMM to recognize
unrecognizable context transitions for
VMGOES test scenarios.

Builds 10 and 11 focus on providing the DAE with
the capability to completely control the vehicle
model, when the DAE is unable to recognize what
the live vehicle is doing. Again, Build 10 uses the
ModSAF M1A2 entity as the "expert" and Build 11
uses a human expert.

Lastly, Builds 12 and 13 can be described as:

12. Develop procedures for refining previously
trained DAEUCTO/VMModSAF off-line (adjust
DAEUCTO/VM ModSAF parameters or contexts) for
VMGOES test scenarios.

13. Develop procedures for refining previously
trained DAEUCTO/VMMM off-line (adjust
DAEUCTO/VMMM parameters or contexts) for
VMGOES test scenarios.

Once VMGOES becomes functional, it will have
access to more observational data. Those data
may help further explain behavior. Builds 12 and
13 capitalize on this fact by providing a
mechanism to capture those data and refine the
vehicle models.

SUMMARY

This paper described a modeling framework for
the development of a system designed to reduce
the communications bandwidth required for an
inter-vehicle embedded simulation exercise. This
system includes a behavior model of the vehicle in
the exercise and a difference analysis engine
tasked with keeping that model synchronized with
its live counterpart. Presently, the vehicle model
and the DAE are being developed by using a
ModSAF M1A2 entity as the "expert" from which
knowledge is acquired. Future endeavors include
efforts to apply the lessons learned from this
phase of the study to the elicitation of knowledge
from a human expert.

ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army
Simulation, Training, and Instrumentation
Command as part of the Inter-Vehicle Embedded
Simulation and Technology (INVEST) Science and
Technology Objective (STO), contract
N61339-98-K-0001. That support is gratefully
acknowledged.

BIBLIOGRAPHY

Bahr,H.A. and DeMara, R.F., (1996). A
Concurrent Model Approach to Reduced
Communication in Distributed Simulation,
Proceedings of the 15th Annual Workshop on
Distributed Interactive Simulation, Orlando, FL.

Gonzalez, A.J., Georgiopoulos, M., DeMara, R.F.,
Henninger, A, and Gerber, W., (1998).
Automating the CGF Model Development and
Refinement Process by Observing Expert
Behavior in a Simulation. In Proceedings of the
8th Conference in Computer Generated Forces
and Behavior Representation, Orlando, FL:
University of Central Florida Institute for
Simulation and Training.

Pomerlau, D.A., (1992). Neural Network
Perception for Mobile Robot Guidance, Ph.D.
Dissertation, School of Computer Science,
Carnegie Melon University, Pittsburg, PA.

Pomerlau, D., Thorpe, C., Longer, D., Rosenblatt,
J.K., and Sukthankar, R., (1994). AVCS Research
at Carneghie Mellon University. Proceedings Of
Intelligent Vehicle Highway Systems America
1994 Annual Meeting, p. 257-262.

Schach, S.R., (1993). Software Engineering.
Aksen Associates Incorporated Publishers,
Boston, MA.

Smith, S., and Petty, M. (1992). Controlling
Autonomous Behavior in Real-Time Simulation.
In Proceedings of the Second Conference in
Computer Generated Forces and Behavior
Representation. Orlando, FL: University of Central
Florida Institute for Simulation and Training.

	ENABLING TECHNOLOGIES FOR EMBEDDED SIMULATION & EMBEDDED TRAINING
	DEVELOPING SYNCHRONIZED PLAYER MODELS FOR EMBEDDED TRAINING
	BEHAVIOR MODELING FRAMEWORK FOR EMBEDDED SIMULATION

