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ABSTRACT
One of the primary difficulties in providing the interaction between Real and Virtual forces is conveying the large
amount of  data between the respective players for real-time interaction.  In this paper the principles underlying
dead reckoning are extended to the limit, by enhancing the prediction capabilities of the interaction between
players.  The approach uses pairs of full platform models, rather than just sub-element models.  This minimizes the
data transfer required between local and remote parties.

The proposed approach differs from dead reckoning in that the required correction data could approach zero, this is
accomplished  by placing a clone of the opponent platform at each location.  Thus a high fidelity model is tuned in
a closed loop environment to customize the simulation behavior to the unique capabilities of each platform.
Concurrently a clone of this model is tuned open-loop at the remote platform.  The focus of this paper is to
introduce the concept and the components required for implementation.  The components include Difference
Analysis Engine, Adaptive Constructive Model, Simulator or Manned Weapons Platform Instrumentation, and the
Situation Database.

INTRODUCTION
The Army has realized significant benefits by
providing training through the interaction of linked
simulations. Yet there remains a strong desire to
extend these benefits to all trainers by allowing
simulated Virtual Forces  to interact with troops in the
field.  One of the primary difficulties in providing the
interaction between Live and Virtual forces is
conveying the large amount of data between the
respective players for real-time interaction.  The
communications bottleneck is evident in several
current systems, such as those at the Army Combat
Training Centers (CTCs).  At CTCs, the Army
instruments a large number of troops to collect data,
such as position location, and combat activities.  Each
center has a Range Data Measurement Subsystem
(RDMS) installed to transfer this data to and from the
field.  The largest and most versatile RDMS  provides
an average of only 48 bits per second per player and a
peak of 2400 bits per second, yet this is an expensive
state of the art system, based on the latest commercial
products [Bahr 94].

One approach used to reduce the communications
traffic required during Distributed Interactive
Simulation (DIS) is the use of dead-reckoning
algorithms.  Dead-reckoning takes advantage of
knowledge of the physical behavior of entities which
dictates that moving bodies can only change speed or
direction in certain predictable ways.  As long as the
moving body does not deviate from this predicted
route, there is no need to send additional information
from the source monitoring the movement to the
receiver using the motion information to determine the
current location of the entity.

We introduce an enhanced approach which further
reduces the communications bandwidth required for
DIS.  This paper explains the concept, identifies
general requirements, and discusses characteristics of
those requirements.

PROPOSED APPROACH
In the proposed Concurrent Model approach, the
principles underlying dead-reckoning are extended to
the limit.  In dead-reckoning, at both the source and



receiver an algorithm is executed based on the
positioning information provided by the source to the
receiver.  The source continues to compute the current
position and compare that to the measured position.
As long as the calculated position is within certain
error bounds no updates are provided to the receiver.
Meanwhile, the receiver calculates the predicted
position and uses it as the current position of the
moving body as it has confidence that, in the absence
of correcting information, this position is accurate
within error bounds.  In this case, the dead reckoning
algorithm represents a model of moving-body
positioning.  Thus, positioning information is the
parameter that is exchanged between two copies of the
model.

This approach is extended to predict the interaction
between players. The approach uses pairs of full-
platform models, rather than only sub-element models.
This minimizes the data transfer between the remote
interactive parties, and yet maximizes responsiveness,
while allowing detailed manipulation or articulated
components at the local level.  An interactive situation
requires pairs of models for each participant.  The
difference between this and the dead-reckoning
approach is this employs two high-fidelity models and
ideally the required correction data could approach
zero.  Essentially, the respective platform is cloned on
the target platform.  An exact clone would respond
identically as the simulated platform and crew, since it
is collocated with the target there would be no
measurable delays, thus the highest fidelity simulation.
In actuality, cloning the crew and platform is
impossible, but cloning a model is routine.  Thus, the
proposal is to place a high fidelity model of the
simulated crew and platform on that platform, and in a
closed-loop environment tune that model to match the
capabilities of the platform.  Concurrently, place a
clone of the model on the target platform and in an
open loop environment apply the corrections made to
the reference model to its clone, thereby keeping it a
clone of the reference model.

For the purposes of this paper certain assumptions are
made.  High-fidelity models/simulations are available
and technology will provide the necessary,  cost
effective, computational resources.  The focus of this
paper is then on:  (1) How the differences can be
detected.  (2) How the models can be adjusted to
minimize the errors of prediction.  (3) What
technological capabilities are required to make it work,
in terms of data storage, computational capability, and
communications bandwidth.  The goal is to tune the
high fidelity model to the point it can accurately

predict the manned platform's response to all shared
information.  The range of applicability of this
approach is highly dependent on the degree that this
goal is met.

Assuming that the goal is totally met, we obtain a
model of my opponent within inches of me if
necessary.  Gone are the restrictions on bandwidth, and
latency imposed by shared communications media.
Now all the constraints on the interaction are those
imposed for realism, i.e., simulation of real world
delays, such as, propagation of sound, appearance of
damage, speed of projectiles, responsiveness to
controls, and reaction times.  Certainly, this does not
imply that the communication requirement is zero, but
that it can be limited to those items that are more
commonly sent by tactical communications such as,
orders and intelligence information.  This information
must also include changes in status caused by other
interactions.  It is still important that each model have
access to his normal view of the battlefield, however,
that is normally shared information, which will be
addressed later in this paper.  The modeled opponent I
am playing is a specific opponent not some
generalization.  If I defeat this opponent, his
replacement could react totally different.  A benefit of
this approach is that the set of parameters used to tune
the model become a description of the manned
platform specific to that platform and crew.  This
description could be used for comparison purposes to
other crews for the same platform with the eventual
result that performance goals could be established and
training results could be measured.

Detection of differences between simulator and model
need to occur in a manner that leads to the correct
interpretation of the cause of the difference.  This is a
field very akin to the Artificial Intelligence area of
Model Based Reasoning.  The only real distinction is
that Model Based Reasoning  is normally applied to a
diagnostic setting where the model is assumed correct
and the observed system is assumed to be at fault.
However, there should be no problem in shifting the
frame of reference to assume that the observed system
is correct and that the model has the defect that needs
correction.  Yet, there remain several challenging areas
in making this practical.  The diagnostic routines must
be fast as we are still working in real time, and the
model must be adaptable to correction.  One of the
beneficial consequences of making the models
adaptable, is that it implies versatility with
characteristics defined by a set of parameters.  As such,
there is high probability that the models used could be
generic with the characteristics rapidly tailored by



parameters, and potentially adapted using  Machine
Learning techniques.

By using concurrent models clones at both ends of the
communications link we can also take out the delays in
the feedback loop.  The error detection and correction
loop would exist only at the source end and the
receiving end would primarily operate-open ended by
just utilizing the correction parameters sent from the
source end.   There always exists the possibility that
the correction parameters sent to the receiving end
could be lost or have errors so some method of state
verification will have to be employed.  The goal is to
tune the model to where it accurately emulates the crew
and platform being modeled.  This is much different
from just changing the output to agree with reference
system.  It means analyzing the error to determine
what model manipulations are required so the error
would not have occurred.  In view of the situation that
we have humans in the loop, we will never have a
perfect model so in this case the goal would be to
minimize the average error.

As introduced earlier in this paper, even if we had
perfect models and the error correction data was zero,
there would remain a requirement for communications
of other information between the field platforms and
the rest of the participants.  What this concept has
done is compressed the requirement for data to the
minimum essential, and removed transmission delays
from apparent reaction times.  The data that is required
is primarily shared data.  This is initially information
that could be pre-stored at each entity, such as, terrain
data base, expected weather conditions, the set of

generic models, and force composition.  During the
exercise this information would have to supplemented
by new orders, intelligence information, and changes
of status of any player in the field of view.  It would
also have to add and delete targets from each player's
field of view.

We talk about interactive simulation and at times we
tend to think of this as one-on-one, whereas, for each
platform it is reality team on team.  To cope with the
team interaction the requirement for models executing
on each platform must be extended to include one for
each player in the field of view.  However, this does not
increase the number of required reference models as all
clones of player would be subject to the same
correction data.

THE CONCURRENT REMOTE MODEL (CRM).
Initially, interactive simulations were directly
connected as depicted in Figure 1.  All information
representing the opponent was passed between the
players as the information became available.  As long
as the respective players had equivalent time bases,
resolution, and physical distances did not introduce
excessive delay, or bandwidth limitations, this
approach was valid.

With DIS the goal was to broaden the scope of
interplay to the point that location of the simulators,
types of simulators, and quantity should not be
constraining.  In this situation, bandwidth and delays
force us to look for methods to restrict the required
update frequency and dependency on timeliness.  One
approach as depicted in Figure 2 is to use dead-
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Figure 1.  Direct Interconnection



reckoning models to estimate parameters in between
updates.  Along with the ever broadening use of the
dead-reckoning approach to include over variables

besides position, we are starting to communicate
additional situation data besides just the interaction
parameters.

The Concurrent Remote Model (CRM) shifts the
transfer of data away from the interaction parameters
to be primarily the typical Combat Situation
Information, with model tuning parameters as
required.  The interaction information as depicted in
Figure 3 is still there, available in greater quantity,
higher precision, and  less delay than by either of the
previous methods.  The difference is all this
information is generated locally at each platform.  The
CRM platform consists of the major elements
identified in Figure 3.  They are the crew served
simulator or weapons system and its requisite
instrumentation.  The difference analysis engine that
replaces the comparator of the dead-reckoning
approach.  The adaptive constructive model that serves
as either the reference model or a clone of the reference
model and the situation data base.    Each of these
blocks is described in more detail in the following
sections.  As illustrated in Figure 3, the play of the
simulator or the manned platform is only noted locally,
the play of the reference model is the “official” view of

the engagement.  This allows a consistent view across
the exercise while still allowing individual evaluation
to take place at the platform level.  Since the reference
model and all of clones are changed synchronously,
they play the same for a given situation regardless of
location.  The maintenance of the situation database
thereby becomes the primary purpose of the DIS.
Since this database should be the same on any platform
participating in the same conflict location, the
information on this link can be broadcast to all
platforms.

Difference Analysis Engine (DAE):
The Difference Analysis Engine (DAE) is the

element that compares the performance of the
simulator or manned weapons platform with the
reference model and develops the parameters that are
passed to the reference model and its remote entity
clones.  It develops the parameters that are used to
adapt the ACM.  This is the primary place where the
states as defined by the training platform (simulator or
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manned weapons system) are used.  The status reported
to the rest of the exercise is the output of the reference
model.  However, in this subsystem the results from the
training platform are treated as absolutely correct, the
results of the reference model are considered as flawed
if differences occur.  The parameters generated from its
analysis will be used at some time in the future.  This
delta between current time and future time is design
dependent but will be large enough to ensure correct
transfer to all clones.  It is assumed that changes will
be made to the clones synchronously with the reference
model.  The synchronous time base will probably be
based on GPS time.  Next to a simulator, this is
probably the most highly customized portion of
concept.  This subsystem has built in to it knowledge of
how the simulator generates results, how the reference
model generates results, and what the school solution
is.  It also takes advantage of the crew's history to
improve its predictions.  This is the subsystem that
uses Artificial Intelligence techniques to determine
why the parameters need to be changed and what
changes to make.  This subsystem learns how a specific
manned platform performs, converts that knowledge
into a set of parameters that it transfers to models of

the platform, and expects those models to perform as if
they were clones of the manned platform.

Adaptive Constructive Model (ACM):
The Adaptive Constructive Model (ACM) is the
element that will be cloned to serve as the reference
model and the remote entity models.  It is anticipated
that this model is constructed from a set of generic
modules, such as tracked vehicle with turret  mounted
gun.  For example, Gun type is 105MM,  power unit is
turbine and it is a heavy armor platform.  Along with
this would be parameters that would differentiate this
particular weapons system from the others in its class.
In addition to the weapons system capabilities model
you need to add the crew model.  This gets into
modeling things such as reaction time, gunnery
accuracy, target recognition, driving tendencies,
impulsiveness and etc.  This would be an unbounded
task except that characteristics of the weapons platform
and training narrow the range.  Other modeling
required is of those characteristics that tend to vary
over the course of the battle, or due to battle damage.
A key characteristic of these models is that the
performance of the model can be adjusted in real-time
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during use.  The model must continuously generate as
an output state, all outputs that determine the location
and status of the weapons system and its crew.  This
includes all weapon firings, and hit and damage
information.  All parameter changes to this model are
applied synchronously to the reference model and all
clones.  That is, parameter changes are received with
the time that they are to be applied.  Then when the
prescribed time is reached the changes are made.  The
reference model directly interacts with clones of the
target systems, while the clones interact with the
reference models of the target systems.  The state as
generated by the reference model is taken as the state
of the weapons platform.

Simulator or Manned Weapons Platform
Instrumentation (SMWPI):
Simulator or Manned Weapons Platform
Instrumentation (SMWPI) is the set of sensors that are
used to determine the state of the Weapons Platform

and its crew.  It must provide the 4 dimensional
location and time measurements, crew status, weapons
status, stores status, and articulated components status
of the platform.  The stores would include for example
ammunition, fuel, and water.  While this information
is readily available on simulators, instrumentation will
probably have to be added to most ground weapons
platforms.  Some research may have to be performed is
this area to determine the required accuracy and
resolution of these sensors.

Situation Data-base:
The Situation Data-base is data that is stored on each
platform required for concurrent simulation to work.
Assuming that a model can always adapt more precise
information to the level of detail that it requires, the
level of detail required for each element is that
required by the most discerning threat platform or the
reference model.  Component data-bases would include
such items as depicted in Table 1.

Table 1.  Situation Data-base Components.
Terrain-database: A detailed terrain and features data-base that allows models to exercise the tactics

appropriate to the combat environment.  Ground vehicles for instance are blocked by
impassable areas, may be masked by terrain features or dust.  Can sink in dry lakes,
etc.  This data-base replaces the human observation of the terrain so in some ways it
serves as part of the model's eyes.

Threat-platform
models, sub-models:

The set of adaptive constructive models that are clones of the reference models on the
respective simulators/weapons platforms.  Parameters for these models can vary from
identifiers of functions, numerical values,  to identifiers of pre-tabulated
characteristics.

Pre-defined orders: Standing orders, or orders issued prior to the start of the exercise.
Vulnerability data: Susceptibility of the local platform to the various threats, as well as the susceptibility

of the threat to the local platform.
Weather-data: Any weather related information that can impact the results of the exercise.
Mine-field, obstacle
data:

Contains locations and types of mines and other obstacles.  Includes visibility data.

Current state data: Status of combat
team members:

Location of team members and their combat status.

Current
intelligence
information:

Contains information about foe above and beyond what sensors
can provide.

Status of each
threat platform:

Current status of each of the targets within field of view.

Current orders: The set of orders that govern platform's objectives and
techniques for achieving those objectives.

Predetermined
parameters of all
potential threats:

A data-base of all players identified as potential participants in the exercise.  This
allows the initialization of the clones based on an identifier rather than by detailed
transferred parameters.

Learned performance
of local crew and
platform against each
threat:

A historical data-base used by the DAE subsystem to initialize the reference model.



COMMUNICATION DEFINITION
Ideally, all communications would be the standard
tactical communications.  However, a platform is
normally equipped only for its direct mission nets, so
although the information could be available in the RF
spectrum, it is not available in a form compatible with
simulation.  Therefore, a minimum DIS style
communications requirement will remain even for the
ideal case.  This minimum requirement would be the
transmission of command, control, intelligence, and
coordination information used on the battlefield by any
involved player whether real or virtual.  Only then can
a clone and its reference model have any hope of
matching the platform's responses.  As the
communications capability of the tactical system
increase so must the information transmitted by the
DIS net.

One of the problems with this requirement is that much
of this information is primarily transferred by voice,
thereby requiring conversion before used for
simulation.  AI systems are restricted to dealing with
bounded discrete sets of inputs.   The biggest technical
challenge in this area would probably occur in the
conversion of coordinating information transferred
between platforms of a combat team.  The reason this
is challenging is that it primarily occurs between
platforms in close proximity over communication
channels with limited range.  While this is a difficult
requirement, its solution also has some valuable side
benefits, as this is also a precise area where training
feedback can have a large payoff.  For example, a team
leader issues a command for one action, while the team
member interprets it as a command for a different
action,  if this information has been converted by an
independent entity, it allows objective assessment of
the error.  With the correct assessment of the problem,
corrective actions for example training, change of
procedures, or change of equipment, could be
instigated.  If a voice to text conversion capability was
provided at the source radio, and a feedback display
was provided on the commanders display it could
provide a redundant capability to assure that the
desired command was indeed transmitted.  The text
could also be transmitted.

The second class of communications data is in the area
that this concept attempts to reduce.  This is the data
required to allow the interaction of the entities.  With
the CRM concept it is limited to the transmission of
parameter changes to tune the clones.  In the ideal
conceptual case this is zero.  The clone approach to the
remote approximating model reduces these required

updates still further by not only knowing where it is,
but also what the objective is, the available paths
between the clone and its objective, and all obstacles.
Furthermore, the clone is making the same decisions as
the crew it is simulating.  As a result, it can be directly
connected to the platform and play the same as if it was
a simulator in the same room.  Now if the crew of the
simulator starts acting as if they were inebriated, a
corrective message needs to be passed to the clone so it
starts acting the same way.

PROCESSING OF DISCREPANT RESULTS
The primary results used for battle assessment is the
states generated by the clone reference model.  These
results should be identical at all sites as they are
synchronously updated for all copies and they fight the
same opponents.  They only engage other reference
clones.  The only place other results are observed are at
the individual players, and their local DAE.  These
results may be used for evaluation of the model but will
primarily be used early in the development cycle.  This
would lead to a situation much like a refereed sports
activity.  The call stands, you can argue about it and
maybe get preferred treatment on the next call, but all
you can really do is send a copy of the action and a
complaint to the league office.  The DAE uses the
results to adjust the reference model and its clones, so
in reality the disagreement is noted and will influence
future results.  For this reason it would be beneficial if
the model parameters could be transferred with the
crew from training exercise to exercise.  The
comparison of the crews to clones responses can be
made available for individual assessment, independent
of the exercise results.  No matter how perfect the
clone, there exists the possibility that results achieved
by the simulator or weapons platform differs from the
reference model.  Some key items that were kept in
mind while deciding how to handle this occurrence
are:

• This is a simulation whether live or virtual
troops are involved.
• The vagrancy’s of actual combat are as
amazing as those that are simulated.
• Is it necessary for both views of the interaction
agree?
• Are we scoring the actual interaction or are
scoring a response to training?

The primary purpose of interactive training is to
introduce the variety of responses available from an
intelligent foe.  Furthermore, it is important that the
foe exhibit the reaction speed and responsiveness that
could occur in actual combat.  If corrective actions are



desired, they should be inserted as realistically as
possible within the normal response times of human
interaction.  Avoid negative training.  It is believed
that the proposed approach does the best job of
resolving any noted differences.

SYSTEM INTEGRATION AND APPLICATION
If this concept was used as a goal for trainer
development, it would provide for the outline for
incremental development of the various elements that
would be integrated for a large scale, combined live
and virtual exercise.  The initial adaptive constructive
model of the weapons platform would be developed
during the concept exploration phase of the tactical
system.  It would be used to study the fighting
effectiveness of the proposed system, and allow
development of proposed tactics.  The comparison
analysis engine would be developed during the training
simulator development and would allow the refinement
of both the simulator and constructive model.  From
the earliest phase, limited copies of these
models/simulators could be used in exercises to help in
the assessment of the weapon systems potential.
During the development phase of the weapon system
the embedded trainer would be fashioned to use other
systems adaptive constructive models as the threat
source.  It would also use the Data-base for embedded
training.  The platoon trainer would add DIS
component that would be used for coordinated
operations against constructive models.  If a training
console was added it could be used to send parameter
changes to the adaptive constructive models.  For
force- on-force training the comparison analysis engine
would be added to the embedded trainer to allow the
interactive training with the opposing force whether
virtual or live.  At this time any additional sensors
would be added to provide the full status of the
platform, and any required voice conversion.

It is assumed that the embedded trainer provides the
“cockpit display” that shows the threat force and its
actions.  This display is part of the normal “cockpit
display” used during actual platform operation.  The
data-base used for embedded training includes the
terrain database, and model data-base that will also be
used for interactive force-on-force training.

CONCLUSIONS
From a subjective viewpoint the proposed Concurrent
Remote Model concept will minimize the data that
needs to be exchanged among remote player platforms
participating in joint exercises.  The requirements for
implementation of the concept identifies area’s that
require further research to provide all the elements.

This concept introduces an approach that can be used
guide trainer development from embedded, through
force-on-force devices that will minimize duplication
while maximizing training effectiveness.  This concept
requires a subsystem to learn how manned weapons
platform performs in the course of a battle, quantifies it
in a set of parameters that are applied to a model which
then fights as a cloned version of that platform.  These
parameters with their model completely describe the
performance characteristics of the platform, and are
available for purposes of evaluation and comparison.
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